题目内容

2.如图,在三棱锥S-ABC中,AS=AB,CS=CB,点E,F,G分别是棱SA,SB,SC的中点.求证:
(1)平面EFG∥平面ABC;
(2)SB⊥AC.

分析 (1)证明EF∥平面ABC,EG∥平面ABC,即可证明平面EFG∥平面ABC;
(2)连接AF,CF,转化证明SB⊥平面AFC,即可得证SB⊥AC.

解答 证明:(1)∵E、G分别为SA、SC的中点,
∴EF、EG分别是△SAB、△SAC的中位线,可得EF∥AB且EG∥AC.
∵EF?平面ABC,AB?平面ABC,
∴EF∥平面ABC,同理可得EG∥平面ABC
又∵EF、EG是平面EFG内的相交直线,
∴平面EFG∥平面ABC;
(2)连接AF,CF,
∵AS=AB,CS=CB,
∴SB⊥AF,SB⊥FC,
∵AF∩CF=F,
∴SB⊥平面AFC,
∵AC?平面AFC,
∴SB⊥AC.

点评 本题考查了线面、面面平行的判定,考查空间直线的垂直的判断,运用直线与平面的垂直转化证明,属于中档题,掌握好基本定理即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网