题目内容
4.函数f(x),当x>0有意义且满足条件f(2)=1,f(xy)=f(x)+f(y),且f(x)是增函数.(1)求证:f(1)=0;
(2)若f(3)+f(4-8x)>2,求x的取值范围.
分析 (1)令x=2,y=1,并代入f(xy)=f(x)+f(y),即可求出f(1)的值;
(2)令x=2,y=2,代入求得f(4),结合题意可将f(3)+f(4-8x)≥2转化为f(12-24x)≥f(4),结合函数的单调性与函数的定义域
解答 解:(1)在f(xy)=f(x)+f(y)中,令x=2,y=1,则f(2×1)=f(2)+f(1),
又由f(2)=1,则f(1)=0;
(2)令x=2,y=2,则f(2×2)=f(4)=f(2)+f(2)=2,
所以f(3)+f(4-8x)=f(12-24x)≥f(4),
又f(x)为增函数,∴$\left\{\begin{array}{l}{4-8x>0}\\{12-24x≥4}\end{array}\right.$解得:x$≤\frac{1}{3}$,
点评 本题考查了抽象函数的应用,解(2)的关键是根据题意,分析出f(4)=2,进而用f(4)替换2,要注意函数的定义域,属于基础题.
练习册系列答案
相关题目
2.若命题“p∧(¬q)”与“¬p”均为假命题,则( )
| A. | p真q真 | B. | p假q真 | C. | p假q假 | D. | p真q假 |
15.设随机变量ξ等可能取值1,2,3,4,…,n,如果p(ξ<4)=0.3,则n的值为( )
| A. | 3 | B. | 4 | C. | 10 | D. | 不能确定 |
12.在?ABCD中,AB=AC=1,∠ACD=90°,将它沿着对角线AC折起,使AB与CD成60°角,则BD的长度为( )
| A. | 2 | B. | 2或$\sqrt{2}$ | C. | $\sqrt{2}$ | D. | 3$\sqrt{2}$或2$\sqrt{2}$ |
19.若曲线C1:y=x2与曲线C2:y=aex(a>0)至少存在两个交点,则a的取值范围为( )
| A. | [$\frac{8}{{e}^{2}}$,+∞) | B. | (0,$\frac{8}{{e}^{2}}$] | C. | [$\frac{4}{{e}^{2}}$,+∞) | D. | (0,$\frac{4}{{e}^{2}}$] |
16.在等差数列{an}中,a1=-2 012,其前n项和为Sn,若$\frac{{{S_{12}}}}{12}-\frac{{{S_{10}}}}{10}$=2,则S2012的值等于( )
| A. | -2 011 | B. | -2 012 | C. | -2 010 | D. | -2 013 |
13.已知函数y=f(n),满足f(0)=3,且f (n)=nf(n-1),n∈N+,则f(3)=( )
| A. | 6 | B. | 9 | C. | 18 | D. | 24 |