题目内容

已知f1(x)=sinx+cosx,fn+1(x)是fn(x)的导函数,即f2(x)=f1′(x),f3(x)=f2′(x),…,fn+1(x)=fn′(x),n∈N*,则f2015(x)=(  )
A、sinx+cosx
B、-sinx-cosx
C、sinx-cosx
D、-sinx+cosx
考点:导数的运算
专题:导数的综合应用
分析:求函数的导数,确定函数fn′(x)的周期性即可.
解答: 解:∵f1(x)=sinx+cosx,
∴f2(x)=f1′(x)=cosx-sinx,
f3(x)=f2′(x)=-sinx-cosx,
f4(x)=f3′(x)=-cosx+sinx,
f5(x)=f4′(x)=sinx+cosx,
…,
fn+4′(x)=fn′(x),
即fn′(x)是周期为4的周期函数,
f2015(x)=f2014′(x)=f2′(x)=-sinx-cosx,
故选:B
点评:本题主要考查导数的计算,根据导数公式求出函数的周期性是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网