题目内容

如图,三棱锥C-ABD中,AB=AD=BD=BC=CD=2,O为BD的中点,∠AOC=120°,P为AC上一点,Q为AO上一点,且
AP
PC
=
AQ
QO
=2

(Ⅰ)求证:PQ∥平面BCD;
(Ⅱ)求三棱锥P-ABD的体积.
考点:棱柱、棱锥、棱台的体积,直线与平面平行的判定
专题:综合题,空间位置关系与距离
分析:(Ⅰ)由
AP
PC
=
AQ
QO
,可得PQ∥CO,利用线面平行的判定定理证明PQ∥平面BCD;
(Ⅱ)利用VP-ABD=
2
3
VC-ABD
,求三棱锥P-ABD的体积.
解答: (Ⅰ)证明:∵
AP
PC
=
AQ
QO

∴PQ∥CO…(1分)
又∵PQ?平面BCD,CO?平面BCD…(2分)
∴PQ∥平面BCD…(3分)
(Ⅱ)解:由等边△ABD,等边△BCD,O为BD的中点得:BD⊥AO,BD⊥OC,AO∩OC=O,∴BD⊥平面AOC…(5分)
在△AOC中,OA=OC=
3
,∠AOC=120°,∴S△AOC=
1
2
OA•OC•sin∠AOC=
3
3
4
…(7分)
VC-ABD=
1
3
S△AOC•BD=
1
3
3
3
4
•2=
3
2
…(9分)
AP
PC
=2
,∴VP-ABD=
2
3
VC-ABD
=
2
3
3
2
=
3
3
…(13分)
点评:本题考查直线与平面垂直的证明,考查三棱锥体积的计算,考查学生分析解决问题的能力,难度中等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网