题目内容
设A=
+
+
+…+
,B=
+
+
+…+
,则
= .
| 1+cos3° |
| 1+cos7° |
| 1+cos11° |
| 1+cos87° |
| 1-cos3° |
| 1-cos7° |
| 1-cos11° |
| 1-cos87° |
| A |
| B |
考点:二倍角的余弦
专题:三角函数的求值
分析:利用二倍角的余弦公式化、积化和差公式化简A可得A═2cos22.5°sin22°,同理可得B═2sin22.5°sin22°,从而求得
的值.
| A |
| B |
解答:
解:∵A=
+
+
+…+
=
(cos1.5°+cos3.5°+cos5.5°+…+cos43.5°),
∴2sin1°
=(2sin1°cos1.5°+2sin1°cos3.5°+2sin1°cos5.5°+…+2sin1cos43.5°)
=(sin2.5°-sin0.5°)+(sin4.5°-sin2.5°)+…+(sin44.5°-sin42.5°)
=sin44.5°-sin0.5°=2cos22.5°sin22°.
同理可得2sin1°
=2sin1°(sin1.5°+sin3.5°+…+sin43.5°)
=(cos2.5°-cos0.5°)+(cos4.5°-cos2.5°)+…+(cos44.5°-cos42.5°)
=cos44.5°-cos0.5°=2sin22.5°sin22°,
则
=
=cot22.5°=
=
=
=
=
+1,
故答案为:
+1.
| 1+cos3° |
| 1+cos7° |
| 1+cos11° |
| 1+cos87° |
| 2 |
∴2sin1°
| A | ||
|
=(sin2.5°-sin0.5°)+(sin4.5°-sin2.5°)+…+(sin44.5°-sin42.5°)
=sin44.5°-sin0.5°=2cos22.5°sin22°.
同理可得2sin1°
| B | ||
|
=(cos2.5°-cos0.5°)+(cos4.5°-cos2.5°)+…+(cos44.5°-cos42.5°)
=cos44.5°-cos0.5°=2sin22.5°sin22°,
则
| A |
| B |
| 2cos22.5°sin22° |
| 2sin22.5°sin22° |
cos2
| ||||
sin
|
| ||
|
| ||||||
|
2+
| ||
|
| 2 |
故答案为:
| 2 |
点评:本题主要考查二倍角的余弦公式的应用,积化和差公式,属于中档题.
练习册系列答案
相关题目