题目内容
设x,y均为正数,且x>y,求证:2x+
≥2y+3.
| 1 |
| x2-2xy+y2 |
考点:不等式的证明
专题:不等式
分析:因为x>y,所以x-y>0,所以不等式左边减去2y得:2x+
-2y=(x-y)+(x-y)+
≥3
=3,这样便可证出本题.
| 1 |
| (x-y)2 |
| 1 |
| (x-y)2 |
| 3 | (x-y)(x-y)
| ||
解答:
证明:由题设x>y,可得x-y>0;
∵2x+
-2y=2(x-y)+
=(x-y)+(x-y)+
;
又(x-y)+(x-y)+
≥3
=3,当x-y=1时取“=“;
∴2x+
-2y≥3,即2x+
≥2y+3.
∵2x+
| 1 |
| x2-2xy+y2 |
| 1 |
| (x-y)2 |
| 1 |
| (x-y)2 |
又(x-y)+(x-y)+
| 1 |
| (x-y)2 |
| 3 | (x-y)2
| ||
∴2x+
| 1 |
| x2-2xy+y2 |
| 1 |
| x2-2xy+y2 |
点评:考查对于不等式:a+b+c≥
,a,b,c>0的运用.
| 3 | abc |
练习册系列答案
相关题目
集合M={f(x)|f(-x)=f(x),x∈R},N={f(x)|f(-x)=-f(x),x∈R},P={f(x)|f(1-x)=f(1+x),x∈R},Q={f(x)|f(1-x)=-f(1+x),x∈R}.若f(x)=(x-1)3,x∈R,则( )
| A、f(x)∈M |
| B、f(x)∈N |
| C、f(x)∈P |
| D、f(x)∈Q |
已知集合S={x||x|<5},T={x|x<3或x>7},则S∩T=( )
| A、{x|-7<x<-5} |
| B、{x|3<x<5} |
| C、{x|-5<x<3} |
| D、{x|-7<x<5} |
已知集合M={-1,0,2},N={x|
≤0},则M∩N=( )
| x-2 |
| x+1 |
| A、{-1,0,2} |
| B、{0,1,2} |
| C、{0,2} |
| D、∅ |
如图:底面是矩形ABCD,PA⊥底面ABCD,则图中直角三角形的个数( )

| A、8 | B、7 | C、6 | D、5 |