题目内容

设x,y均为正数,且x>y,求证:2x+
1
x2-2xy+y2
≥2y+3.
考点:不等式的证明
专题:不等式
分析:因为x>y,所以x-y>0,所以不等式左边减去2y得:2x+
1
(x-y)2
-2y
=(x-y)+(x-y)+
1
(x-y)2
≥3
3(x-y)(x-y)
1
(x-y)2
=3
,这样便可证出本题.
解答: 证明:由题设x>y,可得x-y>0;
∵2x+
1
x2-2xy+y2
-2y=2(x-y)+
1
(x-y)2
=(x-y)+(x-y)+
1
(x-y)2

又(x-y)+(x-y)+
1
(x-y)2
≥3
3(x-y)2
1
(x-y)2
=3
,当x-y=1时取“=“;
∴2x+
1
x2-2xy+y2
-2y≥3,即2x+
1
x2-2xy+y2
≥2y+3.
点评:考查对于不等式:a+b+c
3abc
,a,b,c>0
的运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网