题目内容

集合M={f(x)|f(-x)=f(x),x∈R},N={f(x)|f(-x)=-f(x),x∈R},P={f(x)|f(1-x)=f(1+x),x∈R},Q={f(x)|f(1-x)=-f(1+x),x∈R}.若f(x)=(x-1)3,x∈R,则(  )
A、f(x)∈M
B、f(x)∈N
C、f(x)∈P
D、f(x)∈Q
考点:元素与集合关系的判断
专题:集合
分析:M中的f(x)是偶函数,图象关于y轴对称;N中的f(x)是奇函数,图象关于x轴对称;P中的f(x)图象关于直线x=1轴对称;Q中的f(x)图象关于点(1,0)对称;
解答: 解:∵f(x)=(x-1)3,x∈R的图象关于点(1,0)对称,而条件f(1-x)=-f(1+x),x∈R说明函数f(x)的图象关于点(1,0)对称.
∴f(x)∈Q
故选D.
点评:本题通过集合与元素的关系来考查函数图象的对称问题.要记住一些常的结论.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网