题目内容

19.求值:
(1)sin[2arcsin(-$\frac{3}{5}$)]
(2)tan($\frac{1}{2}$arccos$\frac{1}{3}$)

分析 (1)利用反三角函数的定义,二倍角的正弦公式,求得要求式子的值.
(2)利用反三角函数的定义,半角的正切公式,求得要求式子的值.

解答 解:(1)sin[2arcsin(-$\frac{3}{5}$)]=2sin[arcsin(-$\frac{3}{5}$)]cos[arcsin(-$\frac{3}{5}$)]
=2•(-$\frac{3}{5}$)•$\frac{4}{5}$=-$\frac{24}{25}$.
(2)∵tan($\frac{1}{2}$arccos$\frac{1}{3}$)=$\frac{1-cos(arccos\frac{1}{3})}{sin(arccos\frac{1}{3})}$=$\frac{1-\frac{1}{3}}{\frac{2\sqrt{2}}{3}}$=$\frac{\sqrt{2}}{2}$.

点评 本题主要考查反三角函数的定义,二倍角的正弦公式、半角的正切公式的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网