题目内容

20.在△ABC中,a,b,c分别为内角A,B,C的对边,三边a,b,c成等差数列,且$B=\frac{π}{6}$,则(cosA-cosC)2的值为(  )
A.$1+\sqrt{3}$B.$\sqrt{2}$C.$2+\sqrt{2}$D.0

分析 三边a,b,c成等差数列,可得2b=a+c,利用正弦定理可得:2sinB=sinA+sinC,即sinA+sinC=1,设cosA-cosC=m,平方相加即可得出.

解答 解:∵三边a,b,c成等差数列,
∴2b=a+c,
利用正弦定理可得:2sinB=sinA+sinC,
∴sinA+sinC=2sin$\frac{π}{6}$=1,
设cosA-cosC=m,
则平方相加可得:2-2cos(A+C)=1+m2
∴m2=2cosB+1=$\sqrt{3}+1$.
故选:A.

点评 本题考查了等差数列的通项公式性质、正弦定理、同角三角函数基本关系式、和差公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网