题目内容
设数列{an}的首项a1=
,且an+1=
,记bn=a2n-1-
(n∈N*)bn=a2n-1-
(n∈N*).
(1)求a2,a3;
(2)证明:{bn}是等比数列;
(3)求数列{
}的前n项和Tn.
| 1 |
| 2 |
|
| 1 |
| 4 |
| 1 |
| 4 |
(1)求a2,a3;
(2)证明:{bn}是等比数列;
(3)求数列{
| 3n+1 |
| bn |
考点:数列的求和,等比关系的确定
专题:计算题,等差数列与等比数列
分析:(1)分别将n=2,3代入到an+1=
,即可得到a2,a3的值
(2)因为bn=a2n-1-
,所以bn+1=a2n+1-
=
a2n-
=
(a2n-1+
)-
=
(a2n-1-
),易证{bn}是等比数列;
(3)bn=b1(
)n-1=(
)n+1,所以
=(3n+1)2n+1,应用错位相消法求和.
|
(2)因为bn=a2n-1-
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
(3)bn=b1(
| 1 |
| 2 |
| 1 |
| 2 |
| 3n+1 |
| bn |
解答:
解:
(1)a2=a1+
=
,a3=
a2=
(2)证明:
因为bn=a2n-1-
,所以bn+1=a2n+1-
=
a2n-
=
(a2n-1+
)-
=
(a2n-1-
)
即bn+1=
bn
而b1=a1-
=
≠0,所以{bn}是以
为首项,公比为
的等比数列
(3)bn=b1(
)n-1=(
)n+1,所以
=(3n+1)2n+1
所以Tn=(3×1+1)22+(3×2+1)23+…+(3n+1)2n+1
2Tn=(3×1+1)23+(3×2+1)24+…+(3n-2)2n+1+(3n+1)2n+2
两式相减得:Tn=(3n+1)2n+2-3(23+24+…+2n+1)-16
即Tn=(3n-2)2n+2+8
(1)a2=a1+
| 1 |
| 4 |
| 3 |
| 4 |
| 1 |
| 2 |
| 3 |
| 8 |
(2)证明:
因为bn=a2n-1-
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
即bn+1=
| 1 |
| 2 |
而b1=a1-
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
(3)bn=b1(
| 1 |
| 2 |
| 1 |
| 2 |
| 3n+1 |
| bn |
所以Tn=(3×1+1)22+(3×2+1)23+…+(3n+1)2n+1
2Tn=(3×1+1)23+(3×2+1)24+…+(3n-2)2n+1+(3n+1)2n+2
两式相减得:Tn=(3n+1)2n+2-3(23+24+…+2n+1)-16
即Tn=(3n-2)2n+2+8
点评:本题考查数列的判定,通项公式,和的计算,考查转化构造,计算能力.本题中的数列求和法为错位相消法.
练习册系列答案
相关题目
下列函数中,与y=
是同一函数的是( )
| x2 |
A、y=(
| |||
| B、y=x | |||
| C、y=|x| | |||
D、y=
|
若函数f(x)=xsinx+cosx的导函数是y=f′(x),则f′(
)=( )
| π |
| 2 |
| A、-2 | B、2 | C、0 | D、1 |