题目内容

3.如图,矩形ABCD,AB=2,AD=1,P是对角线AC上一点,$\overrightarrow{AP}=\frac{2}{5}\overrightarrow{AC}$,过P的直线分别交DA的延长线,AB,DC于M,E,N,若$\overrightarrow{DM}=m\overrightarrow{DA},\overrightarrow{DN}=n\overrightarrow{DC}$,则2m+3n的最小值是(  )
A.$\frac{6}{5}$B.$\frac{12}{5}$C.$\frac{24}{5}$D.$\frac{48}{5}$

分析 梅涅劳斯定理,$\frac{CN}{DN}×\frac{DM}{AM}×\frac{AP}{PC}=1$,$\overrightarrow{DM}=m\overrightarrow{DA},\overrightarrow{DN}=n\overrightarrow{DC}$,$\overrightarrow{AP}=\frac{2}{5}\overrightarrow{AC}$,求出m,n的关系,即可利用基本不等式求解2m+3n的最小值.

解答 解:矩形ABCD,AB=2,AD=1,P是对角线AC上一点,$\overrightarrow{AP}=\frac{2}{5}\overrightarrow{AC}$,
可得:$AP=\frac{2}{5}\sqrt{5}$,$PC=\frac{3}{5}\sqrt{5}$,
由梅涅劳斯定理,$\frac{CN}{DN}×\frac{DM}{AM}×\frac{AP}{PC}=1$,$\overrightarrow{DM}=m\overrightarrow{DA},\overrightarrow{DN}=n\overrightarrow{DC}$,
可得:$\frac{2-2n}{2n}×\frac{m}{m-1}×\frac{\frac{2}{5}\sqrt{5}}{\frac{3}{5}\sqrt{5}}=1$,即$(\frac{1}{n}-1)×\frac{m}{m-1}×\frac{2}{3}=1$,
⇒2m+3n=5mn,
2m+3n≥$2\sqrt{6mn}$,
解的:mn$≥\frac{24}{25}$.
当且仅当2m=3n时取等号,
∴2m+3n=5mn≥$\frac{24}{5}$
故选C.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意平面向量加法法则的合理运用

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网