题目内容
18.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的体积为$\frac{243}{16}π$.分析 正四棱锥P-ABCD的五个顶点在同一球面上,则其外接球的球心在它的高PO1上,记为O,如图.求出AO1,OO1,解出球的半径,求出球的体积.
解答
解:正四棱锥P-ABCD的外接球的球心在它的高PO1上,
记为O,PO=AO=R,PO1=4,OO1=4-R,
在Rt△AO1O中,AO1=$\sqrt{2}$,由勾股定理R2=2+(4-R)2得R=$\frac{9}{4}$,
∴球的体积为$\frac{243}{16}π$.
故答案为:$\frac{243}{16}π$.
点评 本题考查球的表面积,球的内接体问题,解答关键是确定出球心的位置,利用直角三角形列方程式求解球的半径.
练习册系列答案
相关题目
6.已知△ABC中,角A,B,C所对的边分别为a,b,c,D是BC的中点,且AD=$\sqrt{10}$,若S△ABC=4,b>c,且$\frac{b-csinA}{a}$=cosC,则B的值为( )
| A. | 60° | B. | 120° | C. | 45° | D. | 90° |
3.
如图,矩形ABCD,AB=2,AD=1,P是对角线AC上一点,$\overrightarrow{AP}=\frac{2}{5}\overrightarrow{AC}$,过P的直线分别交DA的延长线,AB,DC于M,E,N,若$\overrightarrow{DM}=m\overrightarrow{DA},\overrightarrow{DN}=n\overrightarrow{DC}$,则2m+3n的最小值是( )
| A. | $\frac{6}{5}$ | B. | $\frac{12}{5}$ | C. | $\frac{24}{5}$ | D. | $\frac{48}{5}$ |