题目内容

19.数列{an}中,${a_{n+1}}+{(-1)^n}{a_n}=2n-1$,则数列{an}前16项和等于(  )
A.130B.132C.134D.136

分析 an+1+(-1)n an=2n-1,可得a2-a1=1,a3+a2=3,a4-a3=5,a5+a4=7,a6-a5=9,a7+a6=11,…a16-a15=29.
从而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a11=2,a12+a10=40,a13+a15=2,a16+a14=56,即可得出.

解答 解:∵an+1+(-1)n an=2n-1,
∴a2-a1=1,a3+a2=3,a4-a3=5,a5+a4=7,a6-a5=9,a7+a6=11,…a16-a15=29.
从而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a11=2,a12+a10=40,a13+a15=2,a16+a14=56,
从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,
依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.
∴{an}的前16项和为 4×2+8×4+$\frac{4×3}{2}×16$=136.
故选:D.

点评 本题考查了数列递推关系、等差数列与等比数列的通项公式与求和公式、分类讨论方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网