题目内容
12.已知O是坐标原点,若点M(x,y)为平面区域$\left\{\begin{array}{l}{x+y≥2}\\{x≤1}\\{y≤2}\end{array}\right.$上的一个动点,则目标函数z=-x+2y的最大值是( )| A. | 0 | B. | 1 | C. | 3 | D. | 4 |
分析 作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合进行求解即可.
解答
解:由z=-x+2y得y=$\frac{1}{2}$x+$\frac{1}{2}$z,
作出不等式组对应的平面区域如图(阴影部分):
平移直线y=$\frac{1}{2}$x+$\frac{1}{2}$z,
由图象可知当直线y=$\frac{1}{2}$x+$\frac{1}{2}$z过点A时,
直线y=$\frac{1}{2}$x+$\frac{1}{2}$z的截距最大,此时z最大,
由$\left\{\begin{array}{l}{y=2}\\{x+y=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=2}\end{array}\right.$,
即A(0,2),代入目标函数z=-x+2y,
得z=0+2×2=4,
∴目标函数z=-x+2y的最大值是4.
故答案为:0.
点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.
练习册系列答案
相关题目
2.已知不等式组$\left\{\begin{array}{l}{x+3y-6≤0}\\{3x+y-2≥0}\\{x-y-2≤0}\end{array}\right.$表示的平面区域为D,则区域D的面积为( )
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
20.下列函数中,在定义域内单调递增,且在区间(-1,1)内有零点的函数是( )
| A. | y=-x3 | B. | y=2x-1 | C. | y=x2-$\frac{1}{2}$ | D. | y=log2(x+2) |
4.已知a=0.70.6,b=0.6-0.6,c=0.60.7,则a,b,c的大小关系是( )
| A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | b>c>a |