题目内容

12.已知O是坐标原点,若点M(x,y)为平面区域$\left\{\begin{array}{l}{x+y≥2}\\{x≤1}\\{y≤2}\end{array}\right.$上的一个动点,则目标函数z=-x+2y的最大值是(  )
A.0B.1C.3D.4

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合进行求解即可.

解答 解:由z=-x+2y得y=$\frac{1}{2}$x+$\frac{1}{2}$z,
作出不等式组对应的平面区域如图(阴影部分):
平移直线y=$\frac{1}{2}$x+$\frac{1}{2}$z,
由图象可知当直线y=$\frac{1}{2}$x+$\frac{1}{2}$z过点A时,
直线y=$\frac{1}{2}$x+$\frac{1}{2}$z的截距最大,此时z最大,
由$\left\{\begin{array}{l}{y=2}\\{x+y=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=2}\end{array}\right.$,
即A(0,2),代入目标函数z=-x+2y,
得z=0+2×2=4,
∴目标函数z=-x+2y的最大值是4.
故答案为:0.

点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网