题目内容

3.如图建立空间直角坐标系,已知正方体的棱长为2.
(1)求正方体各顶点的坐标;
(2)求A1C的长度.

分析 (1)由已知利用坐标意义即可得出.
(2)解法一:利用两点之间的距离公式即可得出.
解法二:利用勾股定理即可得出.

解答 解:(1)正方体各顶点的坐标如下:A1(0,0,0),B1(0,2,0),C1(2,2,0),D1(2,0,0),A(0,0,2),B(0,2,2),C(2,2,2),D(2,0,2)
(2)解法一:$|{{A_1}C}|=\sqrt{{2^2}+{2^2}+{2^2}}=2\sqrt{3}$.
解法二:∵$|{{A_1}{C_1}}|=2\sqrt{2},|{A{A_1}}|=2$,
在Rt△AA1C1中,${|{A{C_1}}|^2}={|{A{A_1}}|^2}+{|{{A_1}{C_1}}|^2}$,
∴${|{A{C_1}}|^2}={2^2}+{(2\sqrt{2})^2}=12$,∴$|{A{C_1}}|=2\sqrt{3}$,∴$|{{A_1}C}|=2\sqrt{3}$.

点评 本题考查了空间向量坐标、两点之间的距离公式、勾股定理、正方体的性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网