题目内容
已知函数y=f(x),若在定义域内存在x0,使得f(-x0)=-f(x0)成立,则称x0为函数f(x)的局部对称点.
(1)若a∈R且a≠0,证明:函数f(x)=ax2+x-a必有局部对称点;
(2)若函数f(x)=2x+b在区间[-1,2]内有局部对称点,求实数b的取值范围;
(3)若函数f(x)=4x-m•2x+1+m2-3在R上有局部对称点,求实数m的取值范围.
(1)若a∈R且a≠0,证明:函数f(x)=ax2+x-a必有局部对称点;
(2)若函数f(x)=2x+b在区间[-1,2]内有局部对称点,求实数b的取值范围;
(3)若函数f(x)=4x-m•2x+1+m2-3在R上有局部对称点,求实数m的取值范围.
考点:函数的图象,函数的值
专题:函数的性质及应用
分析:(1)根据定义构造方程ax2+x-a=0,再利用判别式得到方程有解,问题得以解决.
(2)根据定义构造方程2x+2-x+2b=0在区间[-1,2]上有解,再利用换元法,设t=2x,求出b的范围,问题得以解决.
(3)根据定义构造方程4x+4-x-2m(2x+2-x)+2(m2-3)=0…(*)在R上有解,再利用换元法,设t=2x+2-x,方程变形为t2-2mt+2m2-8=0 在区间[2,+∞)内有解,再根据判别式求出m的范围即可
(2)根据定义构造方程2x+2-x+2b=0在区间[-1,2]上有解,再利用换元法,设t=2x,求出b的范围,问题得以解决.
(3)根据定义构造方程4x+4-x-2m(2x+2-x)+2(m2-3)=0…(*)在R上有解,再利用换元法,设t=2x+2-x,方程变形为t2-2mt+2m2-8=0 在区间[2,+∞)内有解,再根据判别式求出m的范围即可
解答:
解:(1)由f(x)=ax2+x-a得f(-x)=ax2-x-a,
代入f(-x)=-f(x) 得ax2+x-a+ax2-x-a=0
得到关于x的方程ax2-a=0(a≠0),
其中△=4a2,由于a∈R且a≠0,所以△>0恒成立,
所以函数f(x)=ax2+x-a必有局部对称点;
(2)f(x)=2x+b在区间[-1,2]内有局部对称点,
∴方程2x+2-x+2b=0在区间[-1,2]上有解,于是-2b=2x+2-x,
设t=2x,
≤t≤4,
∴-2b=t+
,其中2≤t+
≤
,
所以-
≤b≤-1
(3)∵f(-x)=4-x-m•2-x+1+m2-3,
由f(-x)=-f(x),∴4-x-m•2-x+1+m2-3=-(4x-m•2x+1+m2-3),
于是 4x+4-x-2m(2x+2-x)+2(m2-3)=0…(*)在R上有解,
令t=2x+2-x(t≥2),则4x+4-x=t2-2,
∴方程(*)变为t2-2mt+2m2-8=0 在区间[2,+∞)内有解,需满足条件:
即
,
化简得1-
≤m≤2
代入f(-x)=-f(x) 得ax2+x-a+ax2-x-a=0
得到关于x的方程ax2-a=0(a≠0),
其中△=4a2,由于a∈R且a≠0,所以△>0恒成立,
所以函数f(x)=ax2+x-a必有局部对称点;
(2)f(x)=2x+b在区间[-1,2]内有局部对称点,
∴方程2x+2-x+2b=0在区间[-1,2]上有解,于是-2b=2x+2-x,
设t=2x,
| 1 |
| 2 |
∴-2b=t+
| 1 |
| t |
| 1 |
| t |
| 17 |
| 4 |
所以-
| 17 |
| 8 |
(3)∵f(-x)=4-x-m•2-x+1+m2-3,
由f(-x)=-f(x),∴4-x-m•2-x+1+m2-3=-(4x-m•2x+1+m2-3),
于是 4x+4-x-2m(2x+2-x)+2(m2-3)=0…(*)在R上有解,
令t=2x+2-x(t≥2),则4x+4-x=t2-2,
∴方程(*)变为t2-2mt+2m2-8=0 在区间[2,+∞)内有解,需满足条件:
|
即
|
化简得1-
| 3 |
| 2 |
点评:本题依据新定义,考查了方程的解得问题以及参数的取值范围,以及换元的思想,转化思想,属于难题
练习册系列答案
相关题目
关于直线的倾斜角与斜率,下列说法正确的是( )
| A、所有的直线都有倾斜角和斜率 |
| B、所有的直线都有倾斜角,但不一定都有斜率 |
| C、直线的倾斜角和斜率有时都不存在 |
| D、所有的直线都有斜率,但不一定有倾斜角 |
如图为某几何体的三视图,则该几何体的表面积为( )

A、10+
| ||||
B、10+
| ||||
C、6+2
| ||||
D、6+
|
变量x、y满足关系式|x-2|+|y-3|≤1,则5x+y的最大值为( )
| A、14 | B、18 | C、8 | D、12 |