题目内容

10.几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动,这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,在接下来的三项式26,21,22,依此类推,求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是(  )
A.110B.220C.330D.440

分析 由题意求得数列的每一项,及前n项和Sn=2n+1-2-n,及项数,由题意可知:2n+1为2的整数幂.只需将-2-n消去即可,分别分别即可求得N的值

解答 由题意可知:$\underset{\underbrace{{2}^{0}}}{第一项}$,$\underset{\underbrace{{2}^{0},{2}^{1}}}{第二项}$,$\underset{\underbrace{{2}^{0},{2}^{1},{2}^{2}}}{第三项}$,…$\underset{\underbrace{{2}^{0},{2}^{1},{2}^{2}…,{2}^{n-1}}}{第n项}$,
根据等比数列前n项和公式,求得每项和分别为:21-1,22-1,23-1,…,2n-1,
每项含有的项数为:1,2,3,…,n,
总共的项数为N=1+2+3+…+n=$\frac{n(n+1)}{2}$,
所有项数的和为Sn:21-1+22-1+23-1+…+2n-1=(21+22+23+…+2n)-n=$\frac{2({2}^{n}-1)}{2-1}$-n=2n+1-2-n,
由题意可知:2n+1为2的整数幂.只需将-2-n消去即可,
则①1+2+(-2-n)=0,解得:n=1,总共有$\frac{(1+1)×1}{2}$+2=3,不满足N>100,
②1+2+4+(-2-n)=0,解得:n=5,总共有$\frac{(1+5)×5}{2}$+3=18,不满足N>100,
③1+2+4+8+(-2-n)=0,解得:n=13,总共有$\frac{(1+13)×13}{2}$+4=95,不满足N>100,
④1+2+4+8+16+(-2-n)=0,解得:n=29,总共有$\frac{(1+29)×29}{2}$+5=440,满足N>100,
∴该款软件的激活码440.
故选:D.

点评 本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网