题目内容

20.设复数z满足$\frac{1-i}{z}$=i+2,则 z=(  )
A.$\frac{1}{5}-\frac{3}{5}i$B.$-\frac{1}{5}+\frac{3}{5}i$C.-$\frac{3}{5}$+$\frac{3}{5}$iD.$\frac{3}{5}$-$\frac{3}{5}$i

分析 把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.

解答 解:由$\frac{1-i}{z}$=i+2,得z=$\frac{1-i}{2+i}=\frac{(1-i)(2-i)}{(2+i)(2-i)}=\frac{1-3i}{5}=\frac{1}{5}-\frac{3}{5}i$,
故选:A.

点评 本题考查复数代数形式的乘除运算,是基础的计算题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网