题目内容
20.设复数z满足$\frac{1-i}{z}$=i+2,则 z=( )| A. | $\frac{1}{5}-\frac{3}{5}i$ | B. | $-\frac{1}{5}+\frac{3}{5}i$ | C. | -$\frac{3}{5}$+$\frac{3}{5}$i | D. | $\frac{3}{5}$-$\frac{3}{5}$i |
分析 把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.
解答 解:由$\frac{1-i}{z}$=i+2,得z=$\frac{1-i}{2+i}=\frac{(1-i)(2-i)}{(2+i)(2-i)}=\frac{1-3i}{5}=\frac{1}{5}-\frac{3}{5}i$,
故选:A.
点评 本题考查复数代数形式的乘除运算,是基础的计算题.
练习册系列答案
相关题目
15.随着智能手机的发展,微信越来越成为人们交流的一种方式.某机构对使用微信交流的态度进行调查,随机调查了50人,他们年龄的频数分布及对使用微信交流赞成人数如表:
(1)由以上统计数据填写下面2×2列联表,并判断是否有99%的把握认为年龄45岁为分界点对使用微信交流的态度有差异:
(2)若对年龄在[55,65),[65,75)的被调查人中各抽取一人进行追踪调查,求选中的2人中至少有一人赞成使用微信交流的概率.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
| 年龄(岁) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
| 频数 | 5 | 10 | 15 | 10 | 5 | 5 |
| 赞成人数 | 5 | 10 | 12 | 7 | 2 | 1 |
| 年龄不低于45岁的人 | 年龄低于45岁的人 | 合计 | |
| 赞成 | |||
| 不赞成 | |||
| 合计 |
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
| P(K2≥k0) | 0.050 | 0.010 | 0.001 |
| k0 | 3.841 | 6.635 | 10.828 |