题目内容
14.已知命题p:x2-4x+3<0与q:x2-6x+8<0;若“p且q”是不等式2x2-9x+a<0成立的充分条件,则实数a的取值范围是( )| A. | (9,+∞) | B. | {0} | C. | (-∞,9] | D. | (0,9] |
分析 分别化简:命题p:x2-4x+3<0.q:x2-6x+8<0.由p∧q可得:2<x<3.若“p且q”是不等式2x2-9x+a<0成立的充分条件,可得a<(-2x2+9x)min,利用二次函数的单调性即可得出.
解答 解:命题p:x2-4x+3<0,解得1<x<3.
q:x2-6x+8<0,解得2<x<4;
由p∧q可得:$\left\{\begin{array}{l}{1<x<3}\\{2<x<4}\end{array}\right.$,解得2<x<3.
若“p且q”是不等式2x2-9x+a<0成立的充分条件,
∴a<(-2x2+9x)min,
令f(x)=-2x2+9x=-2$(x-\frac{9}{4})^{2}$+$\frac{81}{8}$,x∈(2,3).
则f(x)≤f(3)=9.
∴实数a的取值范围是(-∞,9].
故选:C.
点评 本题考查了简易逻辑的判定方法、不等式的解法、函数的性质,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
6.若偶函数f(x)在(-∞,0]内单调递减,则不等式f(-1)<f(x)的解集是( )
| A. | (-∞,-1) | B. | (-1,+∞) | C. | (-1,1) | D. | (-∞,-1)∩(1,+∞) |
4.已知f(x)是定义在R上的偶函数,且在(-∞,0)上单调递增,a=f(0.80.8),b=f(0.81.6),c=f(1.60.8),则a,b,c的大小关系是( )
| A. | c<a<b | B. | a<c<b | C. | a<b<c | D. | c<b<a |