题目内容

2.如图,四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.
(1)求证:AC⊥平面PDB
(2)当PD=$\sqrt{2}$AB=2,设E为PB的中点,求AE与平面ABCD所成角.

分析 (1)根据题意证明AC⊥BD,PD⊥AC,可得AC⊥平面PDB;
(2)根据直线和平面所成角的定义找出直线和平面所成的角,即可得到结论.

解答 (1)证明:∵四边形ABCD是正方形,∴AC⊥BD,
∵PD⊥底面ABCD,AC?底面ABCD,
∴PD⊥AC,
又BD∩PD=D,
∴AC⊥平面PDB,(3分)
(2)解:设AC∩BD=O,连接OE,由(1)知AC⊥平面PDB于O,
又O,E分别为DB、PB的中点,
∴OE∥PD,OE=$\frac{1}{2}$PD=$\frac{\sqrt{2}}{2}$,
∵PD⊥底面ABCD,
∴OE⊥底面ABCD,
则∴∠EAO为AE与平面ABCD所的角,
∵PD=$\sqrt{2}$AB=2,
∴PD=2,AB=$\sqrt{2}$,
在Rt△AOE中,OE=$\frac{\sqrt{2}}{2}$,
∵AB=$\sqrt{2}$,
∴A0=1,
∵AB=AO,
∴∠AEO=45°,(7分)
即AE与平面PDB所成的角的大小为45°.

点评 本题主要考查了直线与平面垂直的判定,以及直线与平面所成的角,考查空间想象能力、运算能力和推理论证能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网