题目内容
12.已知三条直线a、b、c两两平行且不共面,这三条直线可以确定m个平面,这m个平面把空间分成n个部分,则( )| A. | m=2 n=2 | B. | m=2 n=6 | C. | m=3 n=7 | D. | m=3 n=8 |
分析 利用推论三能求出m的值,再利用平面的基本性质及推论能求出n的值.
解答 解:根据推论3(经过两条平行直线有且只有一个平面)知三条直线a、b、c两两平行但不共面时,
这三条直线可以确定3个平面,即m=3.
三条直线把平面分成七个部分.
如把直线看成平面,则三个平面把空间也分成了七个部分,即n=7.
故选:C.
点评 本题考查平面的基本性质及推论的应用,是基础题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.
练习册系列答案
相关题目
14.
自贡某工厂于2016年下半年对生产工艺进行了改造(每半年为一个生产周期),从2016年一年的产品中用随机抽样的方法抽取了容量为50的样本,用茎叶图表示(如图).已知每个生产周期内与其中位数误差在±5范围内(含±5)的产品为优质品,与中位数误差在±15范围内(含±15)的产品为合格品(不包括优质品),与中位数误差超过±15的产品为次品.企业生产一件优质品可获利润20元,生产一件合格品可获利润10元,生产一件次品要亏损10元
(Ⅰ)求该企业2016年一年生产一件产品的利润为10的概率;
(Ⅱ)是否有95%的把握认为“优质品与生产工艺改造有关”.
附:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
(Ⅰ)求该企业2016年一年生产一件产品的利润为10的概率;
(Ⅱ)是否有95%的把握认为“优质品与生产工艺改造有关”.
附:
| P(K2≥k) | 0.050 | 0.010 | 0.001 |
| k | 3.841 | 6.635 | 10.828 |
7.函数f(x)=3-sinx-2cos2x,$x∈[{\frac{π}{6},\frac{7π}{6}}]$,则函数的最大值与最小值之差为( )
| A. | $\frac{3}{8}$ | B. | $\frac{5}{8}$ | C. | $\frac{7}{8}$ | D. | $\frac{9}{8}$ |
4.
如图,网格纸上小正方形的边长为1,下图画出的是某空间几何体的三视图,则该几何体的最短棱长为( )
| A. | 4 | B. | 5 | C. | 4$\sqrt{2}$ | D. | $\sqrt{41}$ |
2.2016年8月江西某高校的成立了一个社会实践调查小组,在对大学生的“4G使用流量问题”的调查中,随机发放了120份问卷,对收回的100份有效问卷进行统计,得到如下2×2列联表:
(1)现已按4G使用流量问题采用分层抽样从45份男生问卷中抽取了9份问卷,试问应该从“流量超过1000M”和“流量没有超过1000M”各抽取多少人?
(2)如果认为良好“4G使用流量问题”与性别有关犯错误的概率不超过P,那么根据临界值表最精确的P的值应为多少?请说明理由.
附:独立性检验统计量K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d,
独立性检验临界表:
| 流量超过1000M | 流量没有超过1000M | 合计 | |
| 男 | 20 | 25 | 45 |
| 女 | 40 | 15 | 55 |
| 合计 | 60 | 40 | 100 |
(2)如果认为良好“4G使用流量问题”与性别有关犯错误的概率不超过P,那么根据临界值表最精确的P的值应为多少?请说明理由.
附:独立性检验统计量K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d,
独立性检验临界表:
| P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| k0 | 1.323 | 2.072 | 2.706 | 3.840 | 5.024 |