题目内容
3.已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2-2x,那么当x>0时,函数f(x)的解析式是$f(x)=\left\{\begin{array}{l}{{x}^{2}+2x,x>0}\\{{x}^{2}-2x,x≤0}\end{array}\right.$.分析 先设x>0,则-x<0,根据x≤0时f(x)的解析式可求出x>0的解析式,用分段函数的形式表示出f(x).
解答 解:设x>0,则-x<0,
∵当x≤0时,f(x)=x2-2x,
∴f(-x)=(-x)2-2(-x)=x2+2x,
∵函数y=f(x)是偶函数,
∴f(x)=f(-x)=x2+2x,
则$f(x)=\left\{\begin{array}{l}{{x}^{2}+2x,x>0}\\{{x}^{2}-2x,x≤0}\end{array}\right.$,
故答案为:$f(x)=\left\{\begin{array}{l}{{x}^{2}+2x,x>0}\\{{x}^{2}-2x,x≤0}\end{array}\right.$.
点评 本题考查利用函数的奇偶性求函数在对称区间上的解析式,以及转化与化归的思想方法.
练习册系列答案
相关题目
18.某香料加工厂生产“沉鱼落雁”和“国色天香”两种香料,已知生产两种香料每吨所需的原材料A,B,C的数量和一周内可用资源数量如下表所示:
如果“沉鱼落雁”每吨的利润为400元,“国色天香”每吨的利润为300元,那么应如何安排生产,才能使香料加工厂每周的利润最大?并求出最大利润.
| 原材料 | 沉鱼落雁(吨) | 国色天香(吨) | 可用资源数量(吨) |
| A | 3 | 2 | 20 |
| B | 3 | 1 | 20 |
| C | 2 | 5 | 25 |
15.在平面直角坐标系中,“直线ax+y-1=0与直线x+ay+2=0平行”是“a=1”的( )
| A. | 充分非必要条件 | B. | 必要非充分条件 | ||
| C. | 充要条件 | D. | 非充分非必要条件 |
12.已知三条直线a、b、c两两平行且不共面,这三条直线可以确定m个平面,这m个平面把空间分成n个部分,则( )
| A. | m=2 n=2 | B. | m=2 n=6 | C. | m=3 n=7 | D. | m=3 n=8 |