题目内容
17.设$a={0.3^{\frac{1}{2}}},b={0.4^{\frac{1}{2}}},c={log_3}0.6$,则( )| A. | b<a<c | B. | c<b<a | C. | c<a<b | D. | a<b<c |
分析 利用指数函数、对数函数及其幂函数的单调性即可判断出正误.
解答 解:∵$a={0.3^{\frac{1}{2}}},b={0.4^{\frac{1}{2}}},c={log_3}0.6$,
log30.6<0<$0.{3}^{\frac{1}{2}}$<$0.{4}^{\frac{1}{2}}$,
∴c<a<b.
故选:C.
点评 本题考查了函数的单调性,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
8.已知Ω={(x,y)|x+y≤6,x≥0,y≥0},A={(x,y)|3x+4y≤12,x≥0,y≥0},若向区域Ω内随机投一点P,则点P落在区域A内的概率为( )
| A. | $\frac{2}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{5}{6}$ |
5.某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.

规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2的列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?
附表:
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,(其中n=a+b+c+d)
规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2的列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?
附表:
| P(K2≥k) | 0.100 | 0.010 | 0.001 |
| k | 2.706 | 6.635 | 10.828 |
12.已知$\overrightarrow{a}$=5$\overrightarrow{e}$,$\overrightarrow{b}$=-3$\overrightarrow{e}$,$\overrightarrow{c}$=4$\overrightarrow{e}$,则2$\overrightarrow{a}$-3$\overrightarrow{b}$+$\overrightarrow{c}$=( )
| A. | 5$\overrightarrow{e}$ | B. | -5$\overrightarrow{e}$ | C. | 23$\overrightarrow{e}$ | D. | -23$\overrightarrow{e}$ |