题目内容
常说“便宜没好货”,这句话的意思是:“不便宜”是“好货”的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据逆否命题的等价性和充分条件必要条件的定义进行判断.
解答:
解:“好货不便宜”是“便宜没好货”的逆否命题,
根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.
所以“好货”⇒“不便宜”,
所以“不便宜”是“好货”的必要条件,
故选:B.
根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.
所以“好货”⇒“不便宜”,
所以“不便宜”是“好货”的必要条件,
故选:B.
点评:本题考查了必要条件、充分条件与充要条件的判断,属于基础题.
练习册系列答案
相关题目
从5双不同颜色的手套中任取4只,其中恰好有一双同色的取法有( )
| A、120 | B、240 |
| C、360 | D、72 |
已知集合A={x|m+1≤x≤2m},B={x|log2x≤3},当A∩B=∅时,实数m的取值范围是( )
| A、1<m<7 |
| B、m<1或m>7 |
| C、0≤m<7 |
| D、m≤0或m>7 |
如果执行如图所示的程序框图,输入正整数N(N≥2)和实数a1,a2,…,an,输出A,B,则( )

| A、A和B分别是a1,a2,…,an中最小的数和最大的数 | ||
| B、A和B分别是a1,a2,…,an中最大的数和最小的数 | ||
C、
| ||
| D、A+B为a1,a2,…,an的和 |
已知α,β∈R,设p:α>β,设q:α-sinβcosα>β-sinαcosβ,则p是q的( )
| A、充分必要条件 |
| B、充分不必要条件 |
| C、必要不充分条件 |
| D、既不充分也不必要条件 |