题目内容
15.已知点P是双曲线$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)右支上一点,F1,F2分别是双曲线的左、右焦点,I为△PF1F2的内心,若S${\;}_{△IP{F}_{1}}$=S${\;}_{△IP{F}_{2}}$$+\frac{1}{2}$S${\;}_{△I{F}_{1}{F}_{2}}$成立,则双曲线的离心率为( )| A. | 4 | B. | $\frac{5}{2}$ | C. | 2 | D. | $\frac{5}{3}$ |
分析 设圆I与△PF1F2的三边F1F2、PF1、PF2分别相切于点E、F、G,连接IE、IF、IG,可得△IF1F2,△IPF1,△IPF2可看作三个高相等且均为圆I半径r的三角形.利用三角形面积公式,代入已知式S${\;}_{△IP{F}_{1}}$=S${\;}_{△IP{F}_{2}}$$+\frac{1}{2}$S${\;}_{△I{F}_{1}{F}_{2}}$,化简可得|PF1|-|PF2|=$\frac{1}{2}$|F1F2|,再结合双曲线的定义与离心率的公式,可求出此双曲线的离心率.
解答
解:如图,设圆I与△PF1F2的三边F1F2、PF1、PF2分别相切于点E、F、G,连接IE、IF、IG,
则IE⊥F1F2,IF⊥PF1,IG⊥PF2,它们分别是:
△IF1F2,△IPF1,△IPF2的高,
∴S${\;}_{△IP{F}_{1}}$=$\frac{1}{2}$×|PF1|×|IF|=$\frac{r}{2}$|PF1|,
${S}_{△IP{F}_{2}}$=$\frac{1}{2}$×|PF2|×|IG|=$\frac{r}{2}$|PF2|,
S${\;}_{△I{F}_{1}{F}_{2}}$=$\frac{1}{2}$×|F1F2|×|IE|=$\frac{r}{2}$|F1F2|,其中r是△PF1F2的内切圆的半径.
∵S${\;}_{△IP{F}_{1}}$=S${\;}_{△IP{F}_{2}}$$+\frac{1}{2}$S${\;}_{△I{F}_{1}{F}_{2}}$,
∴$\frac{r}{2}$|PF1|=$\frac{r}{2}$|PF2|+$\frac{r}{4}$|F1F2|,
两边约去$\frac{r}{2}$得:|PF1|=|PF2|+$\frac{1}{2}$|F1F2|,
∴|PF1|-|PF2|=$\frac{1}{2}$|F1F2|,
根据双曲线定义,得|PF1|-|PF2|=2a,|F1F2|=2c,
∴2a=c⇒离心率为e=2,
故选:C.
点评 本题将三角形的内切圆放入到双曲线当中,用来求双曲线的离心率,着重考查了双曲线的基本性质、三角形内切圆的性质和面积计算公式等知识点,属于中档题.
| A. | 2,3,4 | B. | 3,4,5 | C. | 4,5,6 | D. | 不存在 |
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{5}}{2}$ | C. | $\frac{\sqrt{10}}{5}$ | D. | $\frac{\sqrt{10}}{10}$ |
| A. | y=x|x| | B. | y=-x3 | C. | y=$\frac{1}{x}$ | D. | y=sinx |
| A. | 若a+b≠1,则a2+b2<$\frac{1}{2}$ | B. | 若a+b=1,则a2+b2<$\frac{1}{2}$ | ||
| C. | 若a2+b2<$\frac{1}{2}$,则a+b≠1 | D. | 若a2+b2≥$\frac{1}{2}$,则a+b=1 |