题目内容

15.已知函f(x)数的导数f′(x)=3x2-3ax,f(0)=b,a,b为实数,1<a<2.若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,则a-b的值为$\frac{1}{3}$.

分析 由函数的导函数得到原函数为f(x)=x3-$\frac{3}{2}$ ax2+b,根据f(x)在区间[-1,1]上的单调性求其最大值和最小值,由最小值、最大值分别为-2、1求a、b的值;

解答 解:由已知得,f(x)=x3-$\frac{3}{2}$ax2+b,
由f′(x)=0,得x1=0,x2=a.
∵x∈[-1,1],1<a<2,
∴当x∈[-1,0)时,f′(x)>0,f(x)递增;
当x∈(0,1]时,f′(x)<0,f(x)递减.
∴f(x)在区间[-1,1]上的最大值为f(0)=b,
∴b=1,
又f(1)=1-$\frac{3}{2}$a+1=2-$\frac{3}{2}$a,
f(-1)=-1-$\frac{3}{2}$a+1=-$\frac{3}{2}$a,
∴f(-1)<f(1).即-$\frac{3}{2}$a=-2,得a=$\frac{4}{3}$,
故a=$\frac{4}{3}$,b=1,故a-b=$\frac{1}{3}$,
故答案为:$\frac{1}{3}$.

点评 本题考查了利用导数求函数在闭区间上的最值,训练了分类讨论的数学思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网