题目内容

某电视台“挑战60秒”活动规定上台演唱:
(Ⅰ)连续达到60秒可转动转盘(转盘为八等分圆盘)一次进行抽奖,达到90秒可转两次,达到120秒可转三次(奖金累加).
(Ⅱ)转盘指针落在Ⅰ、Ⅱ、Ⅲ区依次为一等奖(500元)、二等奖(200元)、三等奖(100元),落在其它区域不奖励.
(Ⅲ)演唱时间从开始到三位评委中至少1人呜啰为止,现有一演唱者演唱时间为100秒.
(1)求此人中一等奖的概率;
(2)设此人所得奖金为ξ,求ξ的分布列及数学期望Eξ.
考点:离散型随机变量的期望与方差,互斥事件的概率加法公式,相互独立事件的概率乘法公式
专题:概率与统计
分析:(1)利用相互独立事件的概率乘法公式能求出此人中一等奖的概率.
(2)此人所得奖金ξ的所有可能取值为0,100,200,300,400,500,600,700,1000,分别求出相应的概率,能求出ξ的分布列及数学期望Eξ.
解答: 解:(1)此人中一等奖的概率:
p=
1
8
×
1
8
+
1
8
×
7
8
+
7
8
×
1
8
=
15
64

(2)此人所得奖金ξ的所有可能取值为0,100,200,300,400,500,600,700,1000,
P(ξ=0)=
5
8
×
5
8
=
25
64
,P(ξ=100)=
1
8
×
5
8
+
5
8
×
1
8
=
10
64

P(ξ=200)=
1
8
×
1
8
+
1
8
×
5
8
+
5
8
×
1
8
=
11
64
,P(ξ=300)=
1
8
×
1
8
+
1
8
×
1
8
=
2
64

P(ξ=400)=
1
8
×
1
8
=
1
64
,P(ξ=500)=
1
8
×
5
8
+
5
8
×
1
8
=
10
64

P(ξ=600)=
1
8
×
1
8
+
1
8
×
1
8
=
2
64
,P(ξ=700)=
1
8
×
1
8
+
1
8
×
1
8
=
2
64
,P(ξ=1000=
1
8
×
1
8
=
1
64

∴ξ的分布列为:
 ξ  0  100  200  300  400  500  600  700  1000
 P  
25
64
 
10
64
 
11
64
 
2
64
 
1
64
 
10
64
 
2
64
 
2
64
 
1
64
∴Eξ=100×
10
64
+200×
11
64
+300×
2
64
+400×
1
64
+500×
10
64
+600×
2
64
+700×
2
64
+1000×
1
64
=200.
点评:本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,在历年高考中都是必考题型.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网