ÌâÄ¿ÄÚÈÝ
4£®º¯Êýf£¨x£©=sin£¨2x-$\frac{¦Ð}{3}$£©£¬x¡Ê[-$\frac{¦Ð}{2}$£¬¦Ð]£¬ÔòÒÔϽáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©| A£® | º¯Êýf£¨x£©ÔÚ[-$\frac{¦Ð}{2}$£¬0]Éϵ¥µ÷µÝ¼õ | B£® | º¯Êýf£¨x£©ÔÚ[0£¬$\frac{¦Ð}{2}$]Éϵ¥µ÷µÝÔö | ||
| C£® | º¯Êýf£¨x£©ÔÚ[$\frac{¦Ð}{2}$£¬$\frac{5¦Ð}{6}$]Éϵ¥µ÷µÝ¼õ | D£® | º¯Êýf£¨x£©ÔÚ[$\frac{5¦Ð}{6}$£¬¦Ð]Éϵ¥µ÷µÝÔö |
·ÖÎö Áît=2x-$\frac{¦Ð}{3}$£¬¸ù¾Ý¸÷Ñ¡ÏîÖÐxµÄ·¶Î§µÃ³ötµÄ·¶Î§£¬ÅжÏg£¨t£©=sintÔÚ¸÷¶ÎÉϵĵ¥µ÷ÐÔ£®
½â´ð ½â£ºÁît=2x-$\frac{¦Ð}{3}$£¬g£¨t£©=sint£¬
¶ÔÓÚA£¬µ±x¡Ê[-$\frac{¦Ð}{2}$£¬0]ʱ£¬t¡Ê[-$\frac{4¦Ð}{3}$£¬-$\frac{¦Ð}{3}$]£¬¡ßg£¨t£©ÔÚ[-$\frac{4¦Ð}{3}$£¬-$\frac{¦Ð}{3}$]Éϲ»µ¥µ÷£¬¹ÊA´íÎó£®
¶ÔÓÚB£¬µ±x¡Ê[0£¬$\frac{¦Ð}{2}$]ʱ£¬t¡Ê[-$\frac{¦Ð}{3}$£¬$\frac{2¦Ð}{3}$]£¬¡ßg£¨t£©ÔÚ[-$\frac{¦Ð}{3}$£¬$\frac{2¦Ð}{3}$]Éϲ»µ¥µ÷£¬¹ÊB´íÎó£®
¶ÔÓÚC£¬µ±x¡Ê[$\frac{¦Ð}{2}$£¬$\frac{5¦Ð}{6}$]ʱ£¬t¡Ê[$\frac{2¦Ð}{3}$£¬$\frac{4¦Ð}{3}$]£¬¡ßg£¨t£©ÔÚ[$\frac{2¦Ð}{3}$£¬$\frac{4¦Ð}{3}$]Éϵ¥µ÷µÝ¼õ£¬¹ÊCÕýÈ·£®
¶ÔÓÚD£¬µ±x¡Ê[$\frac{5¦Ð}{6}$£¬¦Ð]ʱ£¬t¡Ê[$\frac{4¦Ð}{3}$£¬$\frac{5¦Ð}{3}$]£¬¡ßg£¨t£©ÔÚ[$\frac{4¦Ð}{3}$£¬$\frac{5¦Ð}{3}$]Éϲ»µ¥µ÷£¬¹ÊD´íÎó£®
¹ÊÑ¡£ºC£®
µãÆÀ ±¾Ì⿼²éÁËÈý½Çº¯ÊýµÄͼÏóÓëÐÔÖÊ£¬ÊôÓÚÖеµÌ⣮
| A£® | $\overrightarrow{a}$=$\overrightarrow{b}$ | B£® | $\overrightarrow{b}$=0 | C£® | $\overrightarrow{a}•\overrightarrow{b}$=0 | D£® | |$\overrightarrow{a}$|=|$\overrightarrow{b}$| |
| A£® | £¨1£¬10£©»ò£¨5£¬10£© | B£® | £¨-1£¬-2£©»ò£¨3£¬-2£© | C£® | £¨5£¬10£© | D£® | £¨1£¬10£© |
| A£® | -3x+2y+1=0 | B£® | 3x-2y+1=0 | C£® | -2x+3y+1=0 | D£® | 2x-3y+1=0 |
| A£® | $\frac{9}{32}$ | B£® | $\frac{1}{2}$ | C£® | $\frac{3}{64}$ | D£® | $\frac{5}{64}$ |
| A£® | -21 | B£® | -19 | C£® | 19 | D£® | 21 |