题目内容

已知函数f(x)=x-alnx(a∈R).
(Ⅰ)当a=2时,求曲线f(x)在x=1处的切线方程;
(Ⅱ)设函数h(x)=f(x)+
1+a
x
,求函数h(x)的单调区间;
(Ⅲ)若g(x)=-
1+a
x
,在[1,e](e=2.71828…)上存在一点x0,使得f(x0)≤g(x0)成立,求a的取值范围.
考点:利用导数求闭区间上函数的最值,利用导数研究函数的单调性,利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:(Ⅰ)求出切点(1,1),求出f(x)=1-
2
x
,然后求解斜率k,即可求解曲线f(x)在点(1,1)处的切线方程.
(Ⅱ)求出函数的定义域,函数的导函数,①a>-1时,②a≤-1时,分别求解函数的单调区间即可.
(Ⅲ)转化已知条件为函数h(x)=x-alnx+
1+a
x
在[1,e]上的最小值[h(x)]min≤0,利用第(Ⅱ)问的结果,通过①a≥e-1时,②a≤0时,③0<a<e-1时,分别求解函数的最小值,推出所求a的范围.
解答: 解:(Ⅰ)当a=2时,f(x)=x-2lnx,f(1)=1,切点(1,1),
f(x)=1-
2
x
,∴k=f′(1)=1-2=-1,
∴曲线f(x)在点(1,1)处的切线方程为:y-1=-(x-1),即x+y-2=0.

(Ⅱ)h(x)=x-alnx+
1+a
x
,定义域为(0,+∞),h(x)=1-
a
x
-
1+a
x2
=
x2-ax-(1+a)
x2
=
(x+1)[x-(1+a)]
x2

①当a+1>0,即a>-1时,令h′(x)>0,
∵x>0,∴x>1+a
令h′(x)<0,∵x>0,∴0<x<1+a.
②当a+1≤0,即a≤-1时,h′(x)>0恒成立,
综上:当a>-1时,h(x)在(0,a+1)上单调递减,在(a+1,+∞)上单调递增.
当a≤-1时,h(x)在(0,+∞)上单调递增.                        

(Ⅲ)由题意可知,在[1,e]上存在一点x0,使得f(x0)≤g(x0)成立,
即在[1,e]上存在一点x0,使得h(x0)≤0,
即函数h(x)=x-alnx+
1+a
x
在[1,e]上的最小值[h(x)]min≤0.
由第(Ⅱ)问,①当a+1≥e,即a≥e-1时,h(x)在[1,e]上单调递减,
[h(x)]min=h(e)=e+
1+a
e
-a≤0
,∴a≥
e2+1
e-1

e2+1
e-1
>e-1
,∴a≥
e2+1
e-1
;                 
②当a+1≤1,即a≤0时,h(x)在[1,e]上单调递增,
∴[h(x)]min=h(1)=1+1+a≤0,
∴a≤-2,
③当1<a+1<e,即0<a<e-1时,∴[h(x)]min=h(1+a)=2+a-aln(1+a)≤0,
∵0<ln(1+a)<1,∴0<aln(1+a)<a,∴h(1+a)>2
此时不存在x0使h(x0)≤0成立.            
综上可得所求a的范围是:a≥
e2+1
e-1
或a≤-2.
点评:本题考查函数的导数的综合应用,曲线的切线方程函数的单调性以及函数的最值的应用,考查分析问题解决问题得到能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网