题目内容
(1)已知a=
,b=
,求[a-
b(ab-2)-
(a-1)-
]2[a-
b(ab-2)-
(a-1)-
的值;
(2)计算
lg8+lg25+lg2•lg50+lg25的值.
| 1 | ||
|
| 1 | |||
|
| 3 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |
| 3 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |
(2)计算
| 2 |
| 3 |
考点:对数的运算性质,根式与分数指数幂的互化及其化简运算
专题:函数的性质及应用
分析:(1)利用根式与分数指数幂的运算性质和运算法则求解.
(2)利用对数的运算性质和运算法则求解.
(2)利用对数的运算性质和运算法则求解.
解答:
解:(1)∵a=
,b=
,
∴[a-
b(ab-2)-
(a-1)-
]2[a-
b(ab-2)-
(a-1)-
]2
=(a-
-
+
b1+1)2•(a-
-
+
b1+1)2
=a-
b4•a-
b4
=a-
b8,
=(2-
)-
(2-
)8
=1.
(2)
lg8+lg25+lg2•lg50+lg25
=2lg2+lg25+lg2(lg5+1)+2lg5
=2+lg5(lg5+lg2)+lg2
=2+lg5+lg2
=3.
| 1 | ||
|
| 1 | |||
|
∴[a-
| 3 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |
| 3 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |
=(a-
| 3 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |
| 3 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |
=a-
| 8 |
| 3 |
| 8 |
| 3 |
=a-
| 16 |
| 3 |
=(2-
| 1 |
| 2 |
| 16 |
| 3 |
| 1 |
| 3 |
=1.
(2)
| 2 |
| 3 |
=2lg2+lg25+lg2(lg5+1)+2lg5
=2+lg5(lg5+lg2)+lg2
=2+lg5+lg2
=3.
点评:本题考查对数式和指数式的化简求值,解题时要认真审题,注意运算法则和运算性质的合理运用.
练习册系列答案
相关题目