题目内容
已知双曲线C1: -=1(a>0,b>0)与双曲线C2: -=1有相同的渐近线,且C1的右焦点为F(,0),则a= ,b= .
1 2
双曲线离心率的求法
如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则AE= .
设函数f(x)=Asin(ωx+)(其中A>0,ω>0,-π<≤π)在x=处取得最大值2,其图象与x轴的相邻两个交点的距离为.
(1)求f(x)的解析式;
(2)求函数g(x)= 的值域.
函数y=的值域为 .
点A(x0,y0)在双曲线-=1的右支上,若点A到右焦点的距离等于2x0,则x0= .
设F1和F2为双曲线-=1(a>0,b>0)的两个焦点,若F1、F2、P(0,2b)是正三角形的三个顶点,则双曲线的离心率为( )
(A) (B)2 (C) (D)3
设双曲线-=1(a>0)的渐近线方程为3x±2y=0,则a的值为( )
(A)4 (B)3 (C)2 (D)1
双曲线的焦点在x轴上,实轴长为4,离心率为3,则该双曲线的标准方程为 ,渐近线方程为 .
直线y=x与椭圆C: +=1的交点在x轴上的射影恰好是椭圆的焦点,则椭圆C的离心率为( )
(A) (B)
(C) (D)