题目内容

已知命题p:“方程x2-ax+a+3=0有解”,q:“
1
4x
+
1
2x
-a>0在[1,+∞)上恒成立”,若p或q为真命题,p且q为假命题,求实数a的取值范围.
考点:复合命题的真假
专题:集合
分析:先求出关于p,q的a的范围,再根据p,q一真一假得到不等式组,解出即可.
解答: 解:∵方程x2-ax+a+3=0有解,
∴△=a2-4(a+3)≥0,
解得:a≤-2或a≥6,
p:a≤-2或a≥6,
t=
1
2x
t2+t>a

∵0<t≤2,
∴q:a≤0,
∵p,q一真一假,
a≤-2或a≥6
a>0
,或
-2<a<6
a≤0

解得:-2<a≤0或a≥6.
点评:本题考查了复合命题的真假的判断,考查了不等式的解法,是一道基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网