题目内容

已知f(x)=ax+
x-2
x+1
(a>1).用反证法证明方程f(x)=0没有负数根.
考点:反证法与放缩法
专题:证明题,反证法
分析:假设f(x)=0 有负根 x0,即 f(x0)=0,根据f(0)=-1,可得 f(x0)>f(0)①,若-1<x0<0,由条件可得f(x0)<f(0)=-1,这与①矛盾,若x0<-1,可得 f(x0)>0,这也与①矛盾.
解答: 证明:假设f(x)=0 有负根 x0,且 x0≠-1,即 f(x0)=0.
根据f(0)=-1,可得 f(x0)>f(0)①. 
若-1<x0<0,由a>1,可知y=ax是增函数,y=
x-2
x+1
在(-1,+∞)是增函数,可知函数f(x)=ax+
x-2
x+1
在(-1,+∞)是增函数,可得f(x0)<f(0)=-1,这与①矛盾.
若x0<-1,则 ax0>0,x0-2<0,x0+1<0,∴f(x0)>0,这与题目条件矛盾.
故假设不正确.
∴方程ax+
x-2
x+1
=0 没有负根.
点评:本题考查用反证法证明数学命题,推出矛盾,是解题的关键和难点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网