题目内容
10.设x,y满足约束条件$\left\{\begin{array}{l}{2x+y-5≤0}\\{x-y-1≤0}\\{x≥1}\end{array}\right.$,若z=3x+y的最大值是( )| A. | 6 | B. | 7 | C. | 0 | D. | 3 |
分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.
解答
解:作出不等式对应的平面区域如图,
由z=3x+y,得y=-3x+z,
平移直线y=-3x+z,由图象可知当直线y=-3x+z,经过点A时,直线y=-3x+z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{2x+y-5=0}\\{x-y-1=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$,即A(2,1),
此时z的最大值为z=3×2+1=7,
故选:B.
点评 本题主要考查线性规划的应用,根据z的几何意义,利用数形结合是解决本题的关键.
练习册系列答案
相关题目
20.已知集合A={x|x∈N|2≤x≤5},B={x|y=$\sqrt{3-x}$},则A∩B=( )
| A. | {2} | B. | {2,3} | C. | {2,3,4} | D. | {4,5} |
18.在2016年高考结束后,针对高考成绩是否达到了考生自己预期水平的情况,某校在高三部分毕业生内部进行了抽样调查,现从高三年级A、B、C、D、E、F六个班随机抽取了50人,将统计结果制成了如下的表格:
(Ⅰ)根据上述的表格,估计该校高三学生2016年的高考成绩达到自己的预期水平的概率;
(Ⅱ)若从E班、F班的抽取对象中,进一步各班随机选取2名同学进行详细调查,记选取的4人中,高考成绩没有达到预期水平的人数为ξ,求随机变量ξ的分布列和数学期望.
| 班级 | A | B | C | D | E | F |
| 抽取人数 | 6 | 10 | 12 | 12 | 6 | 4 |
| 其中达到预期水平的人数 | 3 | 6 | 6 | 6 | 4 | 3 |
(Ⅱ)若从E班、F班的抽取对象中,进一步各班随机选取2名同学进行详细调查,记选取的4人中,高考成绩没有达到预期水平的人数为ξ,求随机变量ξ的分布列和数学期望.
19.若函数f(x)=x3-6bx+3b在(0,1)内有极小值,则实数b的取值范围是( )
| A. | (0,$\frac{1}{2}$) | B. | (-∞,1) | C. | (0,+∞) | D. | (0,1) |
18.数列{an}中,a1=3,且an+1=an-2(n∈N*),则a8=( )
| A. | 17 | B. | 19 | C. | -13 | D. | -11 |