题目内容

16.直线y=2x+b是曲线y=xlnx(x>0)的一条切线,则实数b为-e.

分析 设切点为(x0,x0lnx0),对y=xlnx求导数得y′=lnx+1,从而得到切线的斜率k=lnx0+1,结合直线方程的点斜式化简得切线方程为y=(lnx0+1)x-x0,对照已知直线列出关于x0、m的方程组,解之即可得到实数m的值.

解答 解:设切点为(x0,x0lnx0),
对y=xlnx求导数,得y′=lnx+1,
∴切线的斜率k=lnx0+1,
故切线方程为y-x0lnx0=(lnx0+1)(x-x0),
整理得y=(lnx0+1)x-x0
与y=2x+b比较得lnx0+1=2且-x0=b,
解得x0=e,故b=-e.
故b的值为:-e.

点评 本题考查导数的几何意义,切线方程的求法,考查计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网