题目内容
一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.从袋中随机抽取一个球,将其编号记为a,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为b,求关于x的一元二次方程x2+2ax+b2=0有实根的概率.
考点:古典概型及其概率计算公式
专题:概率与统计
分析:本题是一个古典概型,由分步计数原理知基本事件共12个,当a>0,b>0时,方程x2+2ax+b2=0有实根的充要条件为a≥b,满足条件的事件中包含6个基本事件,由古典概型公式得到结果.
解答:
解:设事件A为“方程x2+2ax+b2=0有实根”.
当a>0,b>0时,方程x2+2ax+b2=0有实根的充要条件为a≥b.
基本事件共12个:(1,2),(1,3),(1,4),(2,1),
(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),
(4,2),(4,3),其中第一个数表示a的取值,第二个数表示b的取值.
事件A中包含6个基本事件:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),
事件A发生的概率为p(A)=
=
.
当a>0,b>0时,方程x2+2ax+b2=0有实根的充要条件为a≥b.
基本事件共12个:(1,2),(1,3),(1,4),(2,1),
(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),
(4,2),(4,3),其中第一个数表示a的取值,第二个数表示b的取值.
事件A中包含6个基本事件:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),
事件A发生的概率为p(A)=
| 6 |
| 12 |
| 1 |
| 2 |
点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
练习册系列答案
相关题目
已知集合A=Z,B={x|y=ln(9-x2)},则A∩B为( )
| A、{-2,-1,0} |
| B、{-2,-1,0,1,2} |
| C、{0,1,2} |
| D、{-1,0,1,2} |