题目内容

已知数列{an}中,a1=1,对任意的k∈N*,a2k-1、a2k、a2k+1成等比数列,公比为qk;a2k、a2k+1、a2k+2成等差数列,公差为dk,且d1=2.
(1)写出数列{an}的前四项;
(2)设bk=
1
qk-1
,求数列{bk}的通项公式;
(3)求数列{dk}的前k项和Dk
考点:等差数列与等比数列的综合
专题:综合题,等差数列与等比数列
分析:(1)由题意得
a22=a1a3
a3=a2+2
,求出a2=2或a2=-1,即可写出数列{an}的前四项;
(2)由a2k,a2k+1,a2k+2成等差数列,其公差为dk,知2a2k+1=a2k+a2k+2,从而能够证明{bk}是等差数列,且公差为1.
(3)由d1=2,得a3=a2+2,解得a2=2,或a2=-1.由此进行分类讨论,能够求出Dk
解答: 解:(1)由题意得
a22=a1a3
a3=a2+2
,∴a22=a2+2,a2=2或a2=-1.…(2分)
故数列{an}的前四项为1,2,4,6或1,-1,1,3.…(4分)
(2)∵a2k-1,a2k,a2k+1成公比为qk的等比数列,a2k+1,a2k+2,a2k+3成公比为qk+1的等比数列,
∴a2k+1=a2kqk,a2k+2=a2k+1qk+1
又∵a2k,a2k+1,a2k+2成等差数列,
∴2a2k+1=a2k+a2k+2
2a2k+1=
a2k+1
qk
+a2k+1qk+1
2=
1
qk
+qk+1
,…(6分)
qk-1
qk
=qk+1-1

1
qk+1-1
=
qk
qk-1
=1+
1
qk-1
1
qk+1-1
-
1
qk-1
=1
,即bk+1-bk=1.
∴数列{bk}为公差d=1等差数列,且b1=
1
q1-1
=1
b1=
1
q1-1
=-
1
2
.…(8分)
∴bk=b1+(k-1)•1=k或bk=k-
3
2
.…(10分)
(3)当b1=1时,由(2)得bk=
1
qk-1
=k,qk=
k+1
k
.
a2k+1
a2k-1
=(
k+1
k
)2
a2k+1=
a2k+1
a2k-1
a2k-1
a2k-3
a3
a1
a1=(
k+1
k
)2•(
k
k-1
)2…(
2
1
)2•1=(k+1)2
a2k=
a2k+1
qk
=k(k+1)
dk=a2k+1-a2k=
a2k+1
qk
=k+1,Dk=
k(k+3)
2
.…(13分)
b1=-
1
2
时,同理可得dk=4k-2,Dk=2k2.…(16分)
点评:本题考查数列的前n项和的计算,等差数列的证明,综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答,注意计算能力的培养.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网