题目内容

2.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=$\frac{1}{2}$AD=1,CD=$\sqrt{3}$.
(1)求证:平面MQB⊥平面PAD;
(2)若二面角M-BQ-C大小的为60°,求QM的长.

分析 (1)证明CD∥BQ,推出QB⊥AD.得到BQ⊥平面PAD,然后证明平面MQB⊥平面PAD.
(2)证明PQ⊥AD.推出PQ⊥平面ABCD,以Q为原点建立空间直角坐标系.求出相关点的坐标,求出平面MBQ法向量,平面BQC的法向量,然后利用利用空间向量的数量积求解即可.

解答 解:(1)∵AD∥BC,BC=$\frac{1}{2}$AD,Q为AD的中点,
∴四边形BCDQ为平行四边形,∴CD∥BQ  …(2分)
∵∠ADC=90°∴∠AQB=90°  即QB⊥AD.
又∵平面PAD⊥平面ABCD且平面PAD∩平面ABCD=AD,
∴BQ⊥平面PAD.∵BQ?平面MQB,∴平面MQB⊥平面PAD…(5分)
(2)∵PA=PD,Q为AD的中点,∴PQ⊥AD.
∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴PQ⊥平面ABCD.…(6分)
如图,以Q为原点建立空间直角坐标系.
则Q(0,0,0),A(1,0,0),P(0,0,$\sqrt{3}$),B(0,$\sqrt{3}$,0),C(-1,$\sqrt{3}$,0),
由 $\overrightarrow{PM}$=$λ\overrightarrow{PC}$=$λ(-1,\sqrt{3},-\sqrt{3})$,且0≤λ≤1,得M($-λ,\sqrt{3}λ,\sqrt{3}-\sqrt{3}λ$)
所以$\overrightarrow{QM}$=($-λ,\sqrt{3}λ,\sqrt{3}(1-λ)$),又$\overrightarrow{QB}$=(0,$\sqrt{3}$,0),
∴平面MBQ法向量为$\overrightarrow{m}$=($\sqrt{3},0,\frac{1-λ}{λ}$)…(8分)
由题意知平面BQC的法向量为$\overrightarrow{n}$=(0,0,1)…(9分)
∵二面角M-BQ-C为60°,
∴cos60°=$|\frac{\overrightarrow{n}•\overrightarrow{m}}{|\overrightarrow{n}||\overrightarrow{m}|}|$=$\frac{1}{2}$,∴$λ=\frac{1}{2}$…(10分)
∴|QM|=$\frac{\sqrt{7}}{2}$…(12分)

点评 本题考查二面角的平面角的求法,平面与平面垂直的判定定理的应用,考查转化思想以及计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网