题目内容

已知数列{an}满足a1=1,an+1=2an+(-1)n(n∈N*).
(1)若bn=a2n-1-
1
3
,求证:数列{bn}是等比数列并求其通项公式;
(2)求数列{an}的通项公式;
(3)求证:
1
a1
+
1
a2
+…+
1
an
<3.
考点:数列与不等式的综合,数列的求和,等比数列的性质,数列递推式
专题:等差数列与等比数列
分析:(1)利用已知递推关系式推出a2n+1=4a2n-1-1,然后证明
bn+1
bn
=4
,即可证明数列{bn}是等比数列,即可求其通项公式;
(2)利用(1)两个数列的关系式,通过n为奇数与偶数求数列{an}的通项公式;
(3)通过n为奇数与偶数分别求解
1
a1
+
1
a2
+…+
1
an
的和,然后判断与3的大小关系即可..
解答: (本小题满分15分)
解:(1)a2n+1=2a2n+(-1)2n=2[2a2n-1+(-1)2n-1]+1=4a2n-1-1,…(2分)
bn+1
bn
=
a2n+1-
1
3
a2n-1-
1
3
=
4a2n-1-
4
3
a2n-1-
1
3
=4
,又b1=a1-
1
3
=
2
3

所以{bn}是首项为
2
3
,公比为4的等比数列,且bn=
2
3
×4n-1
.…(5分)
(2)由(1)可知a2n-1=bn+
1
3
=
2
3
×4n-1+
1
3
=
1
3
(22n-1+1)
,…(7分)a2n=2a2n-1+(-1)2n-1=
2
3
(22n-1+1)-1=
1
3
(22n-1)
.…(9分)
所以an=
1
3
(2n+(-1)n+1)

an=
1
3
(2n-1);(n=2k)
1
3
(2n+1).(n=2k-1)
…(10分)
(3)∴a2n=
1
3
22n-
1
3
a2n-1=
2
3
22n-1+
1
3

1
a2n-1
+
1
a2n
=
3
22n-1+1
+
3
22n-1

=
3×(22n+22n-1)
22n-122n+22n-22n-1-1

=
3×(22n+22n-1)
22n-122n+22n-1-1
3×(22n+22n-1)
22n-122n

=3(
1
22n-1
+
1
22n
)
…(12分)
当n=2k时,(
1
a1
+
1
a2
)+(
1
a3
+
1
a4
)+…+(
1
a2k-1
+
1
a2k
)

≤3(
1
2
+
1
22
+
1
23
+…+
1
22k
)=3×
1
2
(1-
1
22k
)
1-
1
2

=3-
3
22k
<3

当n=2k-1时,(
1
a1
+
1
a2
)+(
1
a3
+
1
a4
)+…+(
1
a2k-3
+
1
a2k-2
)+
1
a2k-1

(
1
a1
+
1
a2
)+(
1
a3
+
1
a4
)+…+(
1
a2k-1
+
1
a2k
)
<3
1
a1
+
1
a2
+…+
1
an
<3.…(15分)
点评:本题考查数列的递推关系式的应用,数列的通项公式的求法,前n项和的求法,数列与不等式的关系,考查分类讨论思想的应用,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网