题目内容
5.已知函数f(x)=2ex-m-x,其中m为实数.(1)当m=ln2时,求函数f(x)的单调区间;
(2)若m≤1,对任意x∈R,记f(x)的最小值为g(m),求g(m)的最小值.
分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(2)利用导数可得函数f(x)在∈(-∞,m-ln2)递减,在(m-ln2,+∞)递增,f(x)的最小值为g(m)=f(m-ln2)=1+ln2-m,g(m)的最小值g(1)=ln2.
解答 解:(1)m=ln2时,f(x)=2ex-ln2-x,f′(x)=ex-1,
令f′(x)>0,解得:x>0,令f′(x)<0,解得:x<0,
故f(x)在(-∞,0)递减,在(0,+∞)递增;
(2)f′(x)=2ex-m-1,令f′(x)=2ex-m-1=0,得x=m-ln2.
当x∈(-∞,m-ln2)时,f′(x)<0,当x∈(m-ln2,+∞)时,f′(x)>0.
∴函数f(x)在∈(-∞,m-ln2)递减,在(m-ln2,+∞)递增,
f(x)的最小值为g(m)=f(m-ln2)=1+ln2-m,
∵m≤1,∴g(m)的最小值g(1)=ln2.
点评 本题考查了函数的单调性,最值,及零点问题,属于中档题.
练习册系列答案
相关题目
9.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如下表:
(1)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;
(2)令g(x)=f (x+$\frac{π}{3}$)-$\frac{1}{2}$,当x∈[-π,π]时,恒有不等式g(x)-a-3<0成立,求实数a的取值范围.
| ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| x | $\frac{2π}{3}$ | $\frac{8π}{3}$ | |||
| Asin(ωx+φ) | 0 | 3 | 0 | -3 | 0 |
(2)令g(x)=f (x+$\frac{π}{3}$)-$\frac{1}{2}$,当x∈[-π,π]时,恒有不等式g(x)-a-3<0成立,求实数a的取值范围.
6.cos600° 等于( )
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | -$\frac{1}{2}$ |
10.记f(n)为最接近$\sqrt{n}$(n∈N*)的整数,如f(1)=1,f(2)=1,f(3)=2,f(4)=2,f(5)=2,…,若$\frac{1}{f(1)}$+$\frac{1}{f(2)}$+$\frac{1}{f(3)}$+…+$\frac{1}{f(m)}$=4054,则正整数m的值为( )
| A. | 2016×2017 | B. | 20172 | C. | 2017×2018 | D. | 2018×2019 |
17.已知$x∈({0,\frac{π}{2}})$,p:sinx<x,q:sinx<x2,则p是q的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |