题目内容
1.(1+x)+(1+x)2+(1+x)3+(1+x)4+…+(1+x)49展开式中x3的系数是( )| A. | ${C}_{51}^{3}$ | B. | ${C}_{50}^{4}$ | C. | ${C}_{51}^{4}$ | D. | ${C}_{47}^{4}$ |
分析 根据题意得出(1+x)+(1+x)2+(1+x)3+(1+x)4+…+(1+x)49展开式中x3的系数是${C}_{3}^{3}$+${C}_{4}^{3}$+${C}_{5}^{3}$+…+${C}_{49}^{3}$=${C}_{4}^{4}$+${C}_{4}^{3}$+${C}_{5}^{3}$+…+${C}_{49}^{3}$,利用组合数的性质求值即可.
解答 解:(1+x)+(1+x)2+(1+x)3+(1+x)4+…+(1+x)49展开式中x3的系数是
${C}_{3}^{3}$+${C}_{4}^{3}$+${C}_{5}^{3}$+…+${C}_{49}^{3}$=${C}_{4}^{4}$+${C}_{4}^{3}$+${C}_{5}^{3}$+…+${C}_{49}^{3}$
=${C}_{5}^{4}$+${C}_{5}^{3}$+…+${C}_{49}^{3}$
=${C}_{6}^{4}$+…+${C}_{49}^{3}$
=..=${C}_{49}^{4}$+${C}_{49}^{3}$=${C}_{50}^{4}$.
故选:B.
点评 本题考查了二项式定理的应用问题,也考查了组合数的性质与应用问题,是基础题目.
练习册系列答案
相关题目
6.sin20°cos40°+sin70°sin140°的值等于( )
| A. | $\frac{1}{4}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{4}$ |