题目内容

1.分别求出下列两个程序的运行结果:

分析 首先分别分析两个语句,找到区别,然后分别计算.分别输出i的值即可

解答 解:根据题意,(1)(2)的分别为求s>20时i的值,
区别为(1)先求和再i自加;(2)先自加再求和
对于(1):
s=1+2+3+4+5+6=21>20,
然后i=6+1=7,
输出7;
对于(2):
i=6,
s=1+2+3+4+5+6=21>20,
输出6.

点评 本题考查程序框图,通过对两个不同框图语句的分析分别作答,属于基础题.

练习册系列答案
相关题目
6.在一次考试中,7位同学的数学、物理成绩分数对应如表:
学生  A
 数学(x分) 60 65 70 75 80 85 90
 物理(y分) 7177 80 84 87 90 92
(1)根据上述数据,求出变量y与x的相应系数并说明物理成绩y与数学成绩x之间线性相关关系的强弱
(2)如果物理成绩y与数学成绩x之间有较强的线性相关关系,求y与x的线性回归方程,并估测该班某位同学数学分数是95分时的物理成绩;(系数精确到0.01)
本题参考数据:
$\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}$=700,$\sum_{i=1}^{n}$(xi-$\overline{x}$)(yi-$\overline{y}$)=480,$\sqrt{700}$≈26.5,$\sqrt{336}$≈18.3
参考公式:相关系数r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$
对于相关数据系数r的大小,如果r∈[-1,-0.75],那么y与x负相关很强,如果r∈[0.75,1],那么y与x正相关很强,如果r∈(-0.75,-0.30)或r∈(0.30,0.75),那么y与x相关性一般,如果r∈[-0.25,0.25],那么y与x相关性较弱.
回归直线方程:$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网