题目内容

11.若函数f(x),g(x)分别为R上的奇函数、偶函数,且满足f(x)-g(x)=ex
(1)求函数f(x)的解析式.
(2)求g(0)的值.

分析 (1)由题意用-x代替x,得f(-x)-g(-x)=e-x,利用f(x)、g(x)分别是R上的奇函数、偶函数,转化为关于f(x)和g(x)另外一个方程,再与已知方程联列,解之可得f(x),g(x)的解析式;
(2)由(1)中g(x)的解析式,将x=0代入可得答案.

解答 解:(1)∵f(x),g(x)分别为R上的奇函数,偶函数f(x)-g(x)=ex
∴f(-x)-g(-x)=e-x
∴-f(x)-g(x)=e-x
①-②得:f(x)=$\frac{1}{2}$(ex-e-x),
①+②得:g(x)=$\frac{1}{2}$(ex+e-x),
(2)g(0)=$\frac{1}{2}$(e0+e0)=1.

点评 本题考查的知识点函数奇偶性的性质,其中根据已知条件构造出第二个方程-f(x)+g(x)=e-x,是解答本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网