题目内容

17.在四边形ABCD中,∠BAD=120°,∠BCD=60°,cosD=-$\frac{1}{7}$,AD=DC=2.
(Ⅰ)求cos∠DAC及AC的长;
(Ⅱ)求BC的长.

分析 (1)△ACD中,由余弦定理可得:AC2=${2}^{2}×2-2×{2}^{2}×(-\frac{1}{7})$=$\frac{64}{7}$,解得AC.可得cos∠DAC=$\frac{\frac{1}{2}AC}{AD}$.
(2)设∠DAC=α=∠DCA.由(1)可得:cosα=$\frac{2\sqrt{7}}{7}$,sinα=$\frac{\sqrt{21}}{7}$.可得sin∠BAC=sin(120°-α).sinB=sin(∠BAC+∠BCA)=sin(180°-2α)=sin2α.在△BAC中,由正弦定理可得:$\frac{BC}{sin∠BAC}$=$\frac{AC}{sinB}$.即可得出.

解答 解:(1)△ACD中,由余弦定理可得:AC2=${2}^{2}×2-2×{2}^{2}×(-\frac{1}{7})$=$\frac{64}{7}$,解得AC=$\frac{8\sqrt{7}}{7}$.
∴cos∠DAC=$\frac{\frac{1}{2}AC}{AD}$=$\frac{\frac{1}{2}×\frac{8\sqrt{7}}{7}}{2}$=$\frac{2\sqrt{7}}{7}$.
(2)设∠DAC=α=∠DCA.
由(1)可得:cosα=$\frac{2\sqrt{7}}{7}$,sinα=$\frac{\sqrt{21}}{7}$.
∴sin∠BAC=sin(120°-α)=$\frac{\sqrt{3}}{2}$×$\frac{2\sqrt{7}}{7}$+$\frac{1}{2}×\frac{\sqrt{21}}{7}$=$\frac{3\sqrt{21}}{14}$.
∴sinB=sin(∠BAC+∠BCA)=sin(180°-2α)=sin2α=2×$\frac{2\sqrt{7}}{7}$×$\frac{\sqrt{21}}{7}$=$\frac{4\sqrt{3}}{7}$.
在△BAC中,由正弦定理可得:$\frac{BC}{sin∠BAC}$=$\frac{AC}{sinB}$.
∴BC=$\frac{\frac{8\sqrt{7}}{7}×\frac{3\sqrt{21}}{14}}{\frac{4\sqrt{3}}{7}}$=3.

点评 本题考查了正弦定理余弦定理、和差公式、三角形内角和定理、诱导公式、等腰三角形的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网