题目内容
已知sinα+cosα=-
,求tanα+
=( )
| 2 |
| 1 |
| tanα |
| A、2 | B、1 | C、-1 | D、-2 |
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:将已知等式两边平方,利用完全平方公式及同角三角函数间基本关系化简,求出sinαcosα的值,原式利用同角三角函数间基本关系化简,将sinαcosα的值代入计算即可求出值.
解答:
解:将已知等式两边平方得:(sinα+cosα)2=sin2α+cos2α+2sinαcosα=1+2sinαcosα=2,
∴sinαcosα=
,
则原式=
+
=
+
=
=
=2.
故选:A.
∴sinαcosα=
| 1 |
| 2 |
则原式=
| sinα |
| cosα |
| 1 | ||
|
| sinα |
| cosα |
| cosα |
| sinα |
| sin2α+cos2α |
| sinαcosα |
| 1 |
| sinαcosα |
故选:A.
点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关题目
(理科)曲线y=sinx,x∈[0,2π]与直线y=0围成的两个封闭区域面积之和为( )
| A、0 | B、1 | C、2 | D、4 |
函数y=Acos(ωx+φ)+b(A>0)的最大值为5,最小值为1,则A=( )
| A、1 | B、2 | C、3 | D、4 |
设函数f(x)=|lnx|,则下列结论中正确的是( )
A、f(1)<f(
| ||
B、f(
| ||
C、f(e)<f(1)<f(
| ||
D、f(e)<f(
|
为调查中学生的数学成绩与物理成绩是否有相互影响的关系,得到如下列联表:
根据以上数据,可以认为高中生的物理和数学成绩的好坏之间有关系的最大把握性为( )
参考数据:K2=
=10.759.
| 物理成绩较好的学生 | 物理成绩较差的学生 | 合计 | |
| 数学成绩较好的学生 | 54 | 40 | 94 |
| 数学成绩较差的学生 | 32 | 63 | 95 |
| 合计 | 86 | 103 | 189 |
参考数据:K2=
| n(ad-bc)2 |
| (a+b)(c+d)(a+c)(b+d) |
| A、99% | B、0.010 |
| C、99.5% | D、0.005 |
设ab>0,下面四个不等式中,正确的是( )
①|a+b|>|a|;②|a+b|<|b|;③|a+b|<|a-b|;④|a+b|>|a|-|b|
①|a+b|>|a|;②|a+b|<|b|;③|a+b|<|a-b|;④|a+b|>|a|-|b|
| A、①和② | B、①和③ |
| C、①和④ | D、②和④ |