题目内容

若曲线C:y=x3-2ax2+2ax上任意点处的切线的倾斜角都为锐角,那么整数a的值为
 
考点:利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:求出原函数的导函数,由导函数大于0恒成立转化为二次不等式对应二次方程的判别式小于0,进一步求解关于a的不等式得答案.
解答: 解:由y=x3-2ax2+2ax,得
y′=3x2-4ax+2a,
∵曲线C:y=x3-2ax2+2ax上任意点处的切线的倾斜角都为锐角,
∴对任意实数x,3x2-4ax+2a>0恒成立,
∴△=(-4a)2-4×3×2a<0.
解得:0<a<
3
2

∴整数a的值为1.
故答案为:1.
点评:本题考查了利用导数研究曲线上某点处的切线方程,函数在某点处的导数值就是对应曲线上该点处的切线的斜率,考查了数学转化思想方法,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网