题目内容

17.设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2-3x+1与g(x)=x+m在[0,3]上是“关联函数”,则m的取值范围为(  )
A.(-3,+∞)B.(-3,-2]C.[-3,0]D.[-2,1]

分析 由题意可得h(x)=f(x)-g(x)=x2-4x+1-m 在[0,3]上有两个不同的零点,故有$\left\{\begin{array}{l}{h(0)≥0}\\{h(3)≥0}\\{h(2)<0}\end{array}\right.$,由此求得m的取值范围.

解答 解:∵f(x)=x2-3x+1与g(x)=x+m在[0,3]上是“关联函数”,
故函数y=h(x)=f(x)-g(x)=x2-4x+1-m在[0,3]上有两个不同的零点,
故有$\left\{\begin{array}{l}{h(0)≥0}\\{h(3)≥0}\\{h(2)<0}\end{array}\right.$,即 $\left\{\begin{array}{l}{1-m≥0}\\{-2-m≥0}\\{-3-m<0}\end{array}\right.$,
解得-3<m≤-2,
故选:B.

点评 本题考查函数零点的判定定理,“关联函数”的定义,二次函数的性质,体现了转化的数学思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网