题目内容
10.已知函数f(x)=x3-3x.(Ⅰ)求函数f(x)在[-2,1]上的最大值和最小值.
(Ⅱ)过点P(2,-6)作曲线y=f(x)的切线,求此切线的方程.
分析 (Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最大值和最小值即可;
(Ⅱ)欲求出切线方程,只须求出其斜率即可,故先设切点坐标为(t,t3-3t),利用导数求出在x=t处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.
解答 解:(Ⅰ)f(x)=x3-3x,
f′(x)=3x2-3=3(x+1)(x-1),
令f′(x)>0,解得:x>1或x<-1,
令f′(x)<0,解得:-1<x<1,
故f(x)在[-2,-1)递增,在(-1,1]递减,
而f(-2)=-2,f(-1)=2,f(1)=-2,
∴f(x)的最小值是-2,
f(x)的最大值是2;
(Ⅱ)∵f′(x)=3x2-3,
设切点坐标为(t,t3-3t),
则切线方程为y-(t3-3t)=3(t2-1)(x-t),
∵切线过点P(2,-6),∴-6-(t3-3t)=3(t2-1)(2-t),
化简得t3-3t2=0,∴t=0或t=3.
∴切线的方程:3x+y=0或24x-y-54=0.
点评 本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.
练习册系列答案
相关题目
7.已知函数$f(x)=\left\{\begin{array}{l}sin(πx)(x∈[{-2,0}])\\{3^{-x}}+1\;(x>0)\end{array}\right.$,则y=f[f(x)]-4的零点为( )
| A. | $-\frac{π}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{3}{2}$ | D. | $-\frac{1}{2}$ |
8.设f(z)=$\overline{z}$,且z1=1+5i,z2=-3+3i,则$f(\overline{{z_1}-{z_2}})$=( )
| A. | 4+2i | B. | 4+3i | C. | 4-2i | D. | 4-3i |
5.在等比数列{an}中,a1=1,a5=16,则公比q为( )
| A. | ±2 | B. | 3 | C. | 4 | D. | 8 |
15.复数${(\frac{{1-\sqrt{3}i}}{i})^2}$=( )
| A. | -3+4i | B. | 2+2$\sqrt{3}$i | C. | 3-4 | D. | -3-4i |
2.函数f(x)=1-3sin2x的最小正周期为( )
| A. | π | B. | 2π | C. | 3π | D. | 4π |
19.若x=-1是函数f(x)=x(x-a)2的极小值点,则a=( )
| A. | 0 | B. | -1 | C. | -2 | D. | -3 |