题目内容
一个几何体的三视图如图所示,则该几何体的直观图可以是( )
D
如图所示,已知正三棱柱ABC-A1B1C1的各条棱长都相等,M是侧棱CC1的中点,则异面直线AB1和BM所成的角的大小是________.
已知两条不同的直线m、n,两个不同的平面α、β,则下列命题中的真命题是( )
A.若m⊥α,n⊥β,α⊥β,则m⊥n
B.若m∥α,n∥β,α∥β,则m∥n
C.若m⊥α,n∥β,α⊥β,则m⊥n
D.若m∥α,n⊥β,α⊥β,则m∥n
在长方体ABCD-A1B1C1D1中,AA1=AD=2,E是棱CD上的一点.
(1)求证:AD1⊥平面A1B1D;
(2)求证:B1E⊥AD1;
(3)若E是棱CD的中点,在棱AA1上是否存在点P,使得DP∥平面B1AE?若存在,求出线段AP的长;若不存在,请说明理由.
已知△ABC的三边长分别为AB=5,BC=4,AC=3,M是AB边上的高,P是平面ABC外一点.给出下列四个命题:
①若PA⊥平面ABC,则三棱锥P-ABC的四个面都是直角三角形;
②若PM⊥平面ABC,且M是AB边的中点,则有PA=PB=PC;
③若PC=5,PC⊥平面ABC,则△PCM面积的最小值为;
④若PC=5,P在平面ABC上的射影是△ABC的内切圆的圆心,则点P到平面ABC的距离为.
其中正确命题的序号是________.(把你认为正确命题的序号都填上)
利用斜二测画法得到的:
①三角形的直观图一定是三角形;
②正方形的直观图一定是菱形;
③等腰梯形的直观图可以是平行四边形;
④菱形的直观图一定是菱形.
以上结论正确的个数是________.
球面上三点A、B、C,AB=18,BC=24,AC=30,球心到平面ABC的距离为球半径的一半,则球半径为________.
如图,在四面体ABCD中,E、F分别是AC和BD的中点,若CD=2AB=4,EF⊥AB,则EF与CD所成的角是________.
已知平面α,β和直线m,给出条件:①m∥α;②m⊥α;③mα;④α∥β.当满足条件________时,有m⊥β.(填所选条件的序号)