题目内容

20.已知函数f(x)=4cos(ωx-$\frac{π}{6}$)sin(π-ωx)-sin(2ωx-$\frac{π}{2}$),其中ω>0.
(1)求函数f(x)的值域
(2)若y=f(x)在区间[-$\frac{3π}{2}$,$\frac{π}{2}$]为增函数,求ω的最大值.

分析 (1)利用辅助角公式,化简f(x)=$\sqrt{3}$sin2ωx+1,即可求得函数f(x)的值域;
(2)令$-\frac{π}{2}+2kπ≤2ωx≤\frac{π}{2}+2kπx$,可求得f(x)的单调递增区间为$[\frac{kπ}{ω}-\frac{π}{4ω},\frac{kπ}{ω}+\frac{π}{4ω}](k∈Z)$,依题意,$[-\frac{3π}{2},\frac{π}{2}]$⊆$[\frac{kπ}{ω}-\frac{π}{4ω},\frac{kπ}{ω}+\frac{π}{4ω}]$,列式可解得ω∈(0,$\frac{1}{6}$],从而可得ω的最大值.

解答 解:(1)$f(x)=4(\frac{{\sqrt{3}}}{2}sinωx+\frac{1}{2}cosωx)sinωx+cos2ωx=\sqrt{3}sin2ωx+1∈[1-\sqrt{3},1+\sqrt{3}]$;
(2)令$-\frac{π}{2}+2kπ≤2ωx≤\frac{π}{2}+2kπ⇒\frac{kπ}{ω}-\frac{π}{4ω}≤x≤\frac{kπ}{ω}+\frac{π}{4ω}$
则f(x)的单调递增区间为$[\frac{kπ}{ω}-\frac{π}{4ω},\frac{kπ}{ω}+\frac{π}{4ω}](k∈Z)$,
故$[-\frac{3π}{2},\frac{π}{2}]$是$[\frac{kπ}{ω}-\frac{π}{4ω},\frac{kπ}{ω}+\frac{π}{4ω}]$子区间,
故$\left\{\begin{array}{l}\frac{kπ}{ω}-\frac{π}{4ω}≤-\frac{3}{2}π\\ \frac{kπ}{ω}+\frac{π}{4ω}≥\frac{π}{2}\end{array}\right.⇒\left\{\begin{array}{l}k-\frac{1}{4}≤-\frac{3}{2}ω\\ k+\frac{1}{4}≥\frac{1}{2}ω\end{array}\right.⇒\left\{\begin{array}{l}ω≤\frac{1}{6}-\frac{2}{3}k\\ ω≤\frac{1}{2}+2k\end{array}\right.⇒0<ω≤\frac{1}{6}$,
故ω的最大值为$\frac{1}{6}$.

点评 本题考查三角函数的恒等变换应用,考查正弦函数的单调性与最值,考查运算求解能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网